96 resultados para hypovolemia
Resumo:
We conducted an open, randomized, and prospective study to determine the effect of hypertonic saline on the secretion of antidiuretic hormone (ADH) and aldosterone in children with severe head injury (Glasgow coma scale <8). Thirty-one consecutive patients at a level III pediatric intensive care unit at a children's hospital received either lactated Ringer's solution (Ringer's group, n = 16) or hypertonic saline (Hypertonic Saline group, n = 15) over a 3-day period. Serum ADH levels were significantly larger in the Hypertonic Saline group as compared with the Ringer's group (P = 0.001; analysis of variance) and were correlated to sodium intake (Ringer's group: r = 0.39, R(2) = 0.15, P = 0.02; Hypertonic Saline group: r = 0.42, R(2) = 0.18, P = 0.02) and volume of fluids given IV (Ringer's group: r = 0.38, R(2) = 0.15, P = 0.02; Hypertonic Saline group: r = 0.32, R(2) = 0.1, P = not significant). Correlation of ADH to plasma osmolality was significant if plasma osmolality was >280 mOsm/kg (r = 0.5, R(2) = 0.25, P = 0.06), indicating an osmotic threshold for ADH release. Serum aldosterone levels were larger on the first day than during Days 2 and 3 in both groups and inversely correlated to serum sodium levels only in the Ringer's group (r = -0.55, R(2) = 0.3, P < 0.001). This group received a significantly larger fluid volume on Day 1 (P = 0.05, Mann-Whitney U-test) than did patients in the Hypertonic Saline group, indicating hypovolemia during the first day. Head-injured children have appropriate levels of ADH. They may be hypovolemic during the first day of treatment, especially if they receive lactated Ringer's solution. IMPLICATIONS: In head-injured patients, we recommend fluid restriction to avoid inappropriate secretion of antidiuretic hormone. In a prospective, randomized, and controlled study in 31 children, we were able to show that the antidiuretic hormone levels are appropriate in response to hypovolemia, sodium load, or both.
Resumo:
We demonstrate here that acute third ventricle injections of GR 113808, a highly selective 5-HT4 antagonist, decrease water intake induced by a previous salt load while potentiating drinking elicited by hypovolemia induced by previous subcutaneous administration of polyethylene glycol in male Wistar rats (200 ± 20 g). At the dose of 160 nmol/rat, third ventricle injections of GR 113808 induced a significant reduction of water intake in salt-loaded animals after 120 min as compared to salt-loaded animals receiving third ventricle injections of saline (salt load + GR = 3.44 ± 0.41 ml, N = 12; salt load + saline = 5.74 ± 0.40 ml, N = 9). At the dose of 80 nmol/rat, GR 113808 significantly enhanced water intake in hypovolemic animals after 120 min as compared to hypovolemic animals receiving third ventricle injections of saline (hypovol + GR = 4.01 ± 0.27 ml, N = 8; hypovol + saline = 2.41 ± 0.23 ml, N = 12). We suggest that central 5-HT4 receptors may exert a positive drive on water intake due to hyperosmolarity and a negative input on drinking provoked by hypovolemia.
Resumo:
Water intake was studied in albino rats with lesions in the lateral preoptic area, in the subfornical organ, and in both the lateral preoptic area and the subfornical organ. Drinking was induced by cellular dehydration, hypovolemia, hypotension (isoproterenol or caval ligation), and water deprivation. The animals with lesions in both areas showed a significant reduction in their water intake in response to cellular dehydration. Drinking due to extracellular dehydration was reduced in the animals that received only subfornical organ lesions, and was reduced even further in the animals with both areas ablated. The lesions in the subfornical organ were sufficient to reduce the thirst induced by caval ligation. The lesions in both areas inhibit water intake induced by caval ligation. Water intake induced by deprivation was reduced when both areas were destroyed. These findings demonstrate that both the lateral preoptic area and the subfornical organ are necessary for normal drinking in response to cellular dehydration, hypovolemia, and hypotension. There is further evidence that the lateral preoptic area and subfornical organ interact in the control of water intake induced by a variety of thirst challenges.
Resumo:
PURPOSE: To investigate whether body sodium content and blood volume contribute to the pathogenesis of orthostatic hypotension in patients with diabetes mellitus. SUBJECTS AND METHODS: Exchangeable sodium, plasma and blood volumes, and catecholamine, renin, and aldosterone levels were assessed in 10 patients with Type II diabetes mellitus who had orthostatic hypotension and control groups of 40 diabetic patients without orthostatic hypotension and 40 normal subjects of similar age and sex. In subgroups, clinical tests of autonomic function and cardiovascular reactivity to norepinephrine and angiotensin II infusions were performed. RESULTS: In diabetic patients with orthostatic hypotension, mean (+/- SD) supine blood pressure was 165/98 +/- 27/12 mm Hg (P <0.05 compared with other groups) and mean upright blood pressure was 90/60 +/- 38/18 mm Hg. Compared with controls, diabetic patients with orthostatic hypotension had a 10% lower blood volume. They also had less exchangeable sodium than patients with diabetes who did not have orthostatic hypotension (P <0.01). Compared with both groups of controls, diabetic patients with orthostatic hypotension had decreased 24-hour urinary norepinephrine excretion and a reduced diastolic blood pressure response to handgrip (P <0.05). Moreover, they displayed reduced products of exchangeable sodium or blood volume and sympathetic function indexes. Cardiovascular pressor reactivity to norepinephrine was enhanced (P <0.01) and beat-to-beat variation decreased (P <0.01) in both groups of diabetic patients. Microvascular complications were more prevalent in the diabetic patients with orthostatic hypotension (90% vs 35%). CONCLUSIONS: Patients who have Type II diabetes mellitus and orthostatic hypotension are hypovolemic and have sympathoadrenal insufficiency; both factors contribute to the pathogenesis of orthostatic hypotension.
Resumo:
Hypotension during intermittent hemodialysis is common, and has been attributed to acute volume shifts, shifts in osmolarity, electrolyte imbalance, temperature changes, altered vasoregulation, and sheer hypovolemia. Although hypovolemia may intuitively seem a likely cause for hypotension in intensive care patients, its role in the pathogenesis of intradialytic hypotension may be overestimated.
Resumo:
O objetivo deste estudo foi avaliar os efeitos hemodinâmicos e metabólicos, após a administração de solução salina hipertônica (NaCL) 7,5% ou em associação ao hidroxietilamido (HES), em cães com hipovolemia induzida e tratados com cetamina. Após a indução da hipovolemia, administrou-se NaCl 7,5% (4,0ml kg-1) no grupo hipertônica levógira (GHL) e grupo hipertônica racêmica (GHR) ou HES 130/0,4 na mesma proporção de sangue retirado, associado a NaCl 7,5% (4ml kg-1) no grupo hipertônica colóide levógira (GHCL) e no grupo hipertônica colóide racêmica (GHCR). Após 30 minutos, administrou-se, por via IV, cetamina levógira (CL) (5mg kg-1) no GHL e GHCL ou cetamina racêmica (CR) (10mg kg-1) no GHR e GHCR. Empregou-se a análise de variância de uma única via com repetições múltiplas (ANOVA) e o teste de Student Newman Keuls (P£0,05). A frequência cardíaca e a pressão arterial sistólica foram menores após a hipovolemia e após a CR. As pressões arteriais média e diastólica foram menores após a hipovolemia e cetamina. A pressão venosa central foi maior após a administração do colóide. Os índices cardíaco e sistólico foram menores após a hipovolemia em todos os grupos e, após a fase de expansão no GHL e GHR. A pressão média da artéria pulmonar foi menor após a hipovolemia em todos os grupos. A pressão de oclusão da artéria pulmonar foi maior após o colóide. O índice do trabalho ventricular esquerdo foi menor após a hipovolemia no GHCL e GHCR. O índice da resistência periférica total foi maior após a hipovolemia e menor após a CL. Observou-se acidose metabólica após a hipovolemia e após a cetamina. Ocorreu acidose respiratória após a cetamina no GHL e GHR. Conclui-se que a administração de NaCl 7,5% associado ao HES 130/0,4 promove o restabelecimento imediato dos parâmetros hemodinâmicos e metabólicos no paciente hipovolêmico; a administração isolada de NaCl 7,5% não é capaz de restaurar a PAM no período imediato, mas melhora os demais parâmetros hemodinâmicos e metabólicos; a administração de CR ou CL produz efeitos hemodinâmicos e metabólicos similares no paciente hipovolêmico.
Resumo:
Avaliaram-se os efeitos cardiovasculares por um período de 24 horas, após a administração de solução salina hipertônica (NaCl) 7,5% ou em associação ao hidroxietilamido 130/0,4 (HES), em cães com hipovolemia induzida e tratados com cetamina levógira ou racêmica. Após a indução da hipovolemia, administrou-se NaCl 7,5% (4mL/kg) no grupo hipertônica levógira (GHL) e no grupo hipertônica racêmica (GHR) ou HES 130/0,4 na mesma proporção de sangue retirado, associado a NaCl 7,5% (4mL/kg) no grupo hipertônica colóide levógira (GHCL) e no grupo hipertônica colóide racêmica (GHCR). Após 30 minutos, administrou-se por via intravenosa, cetamina levógira (CL; 5mg/kg) no GHL e GHCL ou cetamina racêmica (CR; 10mg/kg) no GHR e GHCR. A frequência cardíaca (FC) e a pressão arterial sistólica (PAS) foram menores após a hipovolemia e após a CR. A pressão arterial média (PAM) e a pressão arterial diastólica (PAD) foram menores após a hipovolemia e após a administração de CL e CR. Não foram observadas diferenças significativas entre os grupos em relação à FC, PAS, PAM e PAD durante o período de mensuração por biotelemetria desde T210 até T1440. A administração de HES associado ao NaCl 7,5% propiciou restabelecimento imediato da PAM, a administração de NaCl 7,5% não restaurou a PAM em pacientes hipovolêmicos, a administração de CR ou CL produziu efeitos semelhantes e todos os tratamentos mantiveram estáveis as pressões arteriais e a FC por um período de até 24 horas.
Resumo:
Background: Nitric oxide (NO) synthesis has been described in several circumventricular and hypothalamic structures in the central nervous system that are implicated in mediating central angiotensin-II (ANG-II) actions during water deprivation and hypovolemia. Neuroendocrine and cardiovascular responses, drinking behavior, and urinary excretions were examined following central angiotensinergic stimulation in awake freely-moving rats pretreated with intracerebroventricular injections of N omega-nitro-L-arginine methyl ester (L-NAME, 40 mu g), an inhibitor of NO synthase, and L-arginine (20 ug), a precursor of NO. Results: Injections of L-NAME or ANG-II produced an increase in plasma vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) levels, an increase in water and sodium intake, mean arterial blood pressure and sodium excretion, and a reduction of urinary volume. L-NAME pretreatment enhanced the ANG-II response, while L-arginine attenuated VP and OT release, thirst, appetite for sodium, antidiuresis, and natriuresis, as well as pressor responses induced by ANG-II. Discussion and conclusion: Thus, the central nitrergic system participates in the angiotensinergic responses evoked by water deprivation and hypovolemia to refrain neurohypophysial secretion, hydromineral balance, and blood pressure homeostasis.
Resumo:
In critically ill patients, it is important to predict which patients will have their systemic blood flow increased in response to volume expansion to avoid undesired hypovolemia and fluid overloading. Static parameters such as the central venous pressure, the pulmonary arterial occlusion pressure, and the left ventricular end-diastolic dimension cannot accurately discriminate between responders and nonresponders to a fluid challenge. In this regard, respiratory-induced changes in arterial pulse pressure have been demonstrated to accurately predict preload responsiveness in mechanically ventilated patients. Some experimental and clinical studies confirm the usefulness of arterial pulse pressure as a useful tool to guide fluid therapy in critically ill patients.
Resumo:
Background: Several factors have been implicated in the high-mortality rate of posttraumatic pneumonectomy. In this study, we evaluated the hemodynamic and echocardiographic changes induced by pneumonectomy and fluid resuscitation after hemorrhagic shock. Methods: Fourteen dogs were bled to a target mean arterial pressure of 40 mmHg. The animals were assigned to two groups: control (no fluid resuscitation) and lactated Ringer`s (3 x shed blood volume). The left pulmonary hilum was cross clamped, and the animals were observed for 60 minutes. Systemic hemodynamics was evaluated using Swan-Ganz, arterial catheter, and ultrasonic flow probe. Systemic O(2)-derived variables were calculated. Ejection fraction was determined by two-dimensional echocardiography. Results: Fluid resuscitation improved the mean arterial pressure and systemic oxygen delivery. After pneumonectomy, no significant increase in right ventricular pressure was observed in the LR group. No signs of major ventricular dilation or changes in arterial oxygenation were observed. Conclusion: Our data suggest that pneumonectomy is not associated with early pulmonary hypertension; gentle fluid resuscitation improves cardiovascular performance and is not associated with an increase in right ventricular pressure.
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
In the whole world, around 29,000 children younger than 5 years die every day, and sepsis is the most common cause of death. Whereas in adult patients vasomotor paralysis represents the predominant cause of mortality, death in pediatric sepsis is associated with severe hypovolemia and low cardiac output. The purpose of this article was to review the recent evidence on early treatment of pediatric severe sepsis and septic shock. Although current American College of Critical Care Medicine-Pediatric Advanced Life Support guidelines represent best practice, stronger evidences are lacking to confirm the components of these recommendations. Retrospective studies showed, at the same time, the positive effects arising from the utilization of American College of Critical Care Medicine-Pediatric Advanced Life Support guidelines and the existing barriers to its implementation. And one randomized control trial paralleled the results observed in adult patients and revealed that early goal-directed therapy in children is one of the few therapeutic interventions that proved to be beneficial in septic shock treatment. Early goal-directed therapy in pediatric septic shock is a successful method to optimize and parameterize treatment, but there is still a long way to turn septic shock resuscitation simpler and more widely spread.
Resumo:
Two clinical cases of patients who survived after numerous attacks of Africanized bees (600 and 1500 bee stings, respectively) are reported. Clinical manifestation was characterized by diffuse and widespread edema, a burning sensation in the skin, headache, weakness, dizziness, generalized paresthesia, somnolence and hypotension. Acute renal failure developed and was attributed to hypotension, intravascular hemolysis, myoglobinuria due to rhabdomyolysis and probably to direct toxic effect of the massive quantity of injected venom. They were treated with antihistaminic, corticosteroids and fluid infusion. One of them had severe acute renal failure and dialysis was required. No clinical complication was observed during hospital stay and complete renal function recovery was observed in both patients. In conclusion, acute renal failure after bee stings is probably due to pigment nephropathy associated with hypovolemia. Early recognition of this syndrome is crucial to the successful management of these patients.