6 resultados para hypergravity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice (30+-3 days old) were exposed to hypergravity (4G, one hour/day). Cross-sections of ankle extensor muscles stained immunohistochemically against slow myosin (MHC) determined if hypergravity affects the distribution of slow muscle fibers. Comparisons (ANOVA) between exposed and unexposed animals show hypergravity causes increases in slow fiber density in soleus after fourteen (p=0.049) and thirty day (p=0.Ol9) exposures. Therefore, loading may induce faster development of soleus through increased slow fiber density. Slow fibers increase in plantaris in males after seven (p=0.008) and in females after fourteen days (p=0.003), suggesting hypergravity delays normal elimination of slow fibers. Lateral and intermediate heads of lateral gastrocnemius (LG) show greater numbers of slow fibers, overall, in exposed mice (p=0.003 both). A proximal compartment of LG (LGp) and medial gastrocnemius (MG) are minimally affected by hypergravity. In LGp, only males exposed for fourteen days show decreased slow fiber density (p=0.047), but MG increased slow fiber numbers in exposed females compared to controls (p=0.04).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Neck injuries are common in high performance combat pilots and have been attributed to high gravitational forces and the non-neutral head postures adopted during aerial combat maneuvers. There is still little known about the pathomechanics of these injuries.

Methods: Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels (1, 3, and 5) and four head postures (Neutral, Turn, Extension, and Check-6). Surface electromyography from neck and shoulder muscles was recorded in flight. Three-dimensional measures of head postures adopted in flight were estimated postflight with respect to end-range of the cervical spine using an electromagnetic tracking device.

Results: Mean muscle activation increased significantly with both increasing +Gz and non-neutral head postures. Check-6 at +5 Gz (mean activation of all muscles = 51% MVIC) elicited significantly greater muscle activation in most muscles when compared with Neutral, Extension, and Turn head postures. High levels of muscle co-contraction were evident in high acceleration and non-neutral head postures. Head kinematics showed Check-6 was closest to end-range in any movement plane (86% ROM in rotation) and produced the greatest magnitude of rotation in other planes. Turn and Extension showed a large magnitude of rotation with reference to end-range in the primary plane of motion but displayed smaller rotations in other planes.

Discussion:
High levels of neck muscle activation and co-contraction due to high +Gz and head postures close to end range were evident in this study, suggesting the major influence of these factors on the pathomechanics of neck injuries in high performance combat pilots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Performing specific neck strengthening exercises has been proposed to decrease the incidence of neck injury and pain in high performance combat pilots. However, there is little known about these exercises in comparison to the demands on the neck musculature in flight.

Methods: Eight male non-pilots performed specific neck exercises using two different modalities (elastic band and resistance machine) at six different intensities in flexion, extension, and lateral bending. Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels and four head positions. Surface electromyography (EMG) from selected neck and shoulder muscles was recorded in both activities.

Results: Muscle activation levels recorded during the three elastic band exercises were similar to in-flight EMG collected at +1 Gz (15% MVIC). EMG levels elicited during the 50% resistance machine exercises were between the +3 Gz (9-40% MVIC) and +5 Gz (16-53% MVIC) ranges of muscle activations in most muscles. EMG recorded during 70% and 90% resistance machine exercises were generally higher than in-flight EMG at +5 Gz.

Discussion: Elastic band exercises could possibly be useful to pilots who fly low +Gz missions while 50% resistance machine mimicked neck loads experienced by combat pilots flying high +Gz ACM. The 70% and 90% resistance machine intensities are known to optimize maximal strength but should be administered with care because of the unknown spinal loads and diminished muscle force generating capacity after exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effect of weighted vest suit worn during daily activities on running speed, jumping power, and agility in young men. J Strength Cond Res 26(11): 3030-3035, 2012-Previous weighted vest interventions using exercise in addition to hypergravity have been successful in improving postural balance and power production capacity. The purpose of this study was to investigate if hypergravity alone in daily activities excluding sporting activities is effective in improving neuromuscular performance in young adults. Eight male subjects (age = 32 [SD: 6] years, height = 178 [5] cm, and body mass = 81 [8] kg) wore weighted vests 3 d.wk-1 for 3 weeks during waking hours, excluding sporting activities. Control group comprised 9 male subjects (age = 32 [6] years, height = 179 [5] cm, and body mass = 83 [9] kg). Performance was assessed with countermovement jump (body mass normalized peak power), figure-of-8 running test (running time), and running velocity test at baseline and at the end of the intervention. At baseline, the groups did not differ from each other (multivariate analysis of variance [MANOVA] p = 0.828). A significant group × time interaction (MANOVA F = 5.1, p = 0.015) was observed for performance variables. Analysis of covariance indicated that the intervention improved the figureof- 8 running time (p = 0.016) (22.2 vs. 0.5%), whereas normalized peak power (0.0 vs. 1.6%) and running velocity (1.3 vs. 0.1%) were unaffected (p ≥ 0.095). Wearing weighted vests was effective in slightly improving agility-related performance in young men. Because the effect was small, applying hypergravity only during exercise probably suffices. It appears that a proper volume and intensity of hypergravity could be in the order of 5-10% body weight vest worn during up to 50% of the training sessions for a period of 3-4 weeks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Zero-G parabolic flight reproduces the weightlessness of space for short periods of time. However motion sickness may affect some fliers. The aim was to assess the extent of this problem and to find possible predictors and modifying factors. METHODS Airbus Zero-G flights consist of 31 parabolas performed in blocks. Each parabola consisted of 20s 0g sandwiched by 20s hypergravity of 1.5-1.8g. The survey covered n=246 person-flights (193 Males 53 Females), aged (M+/-SD) 36.0+/-11.3 years. An anonymous questionnaire included motion sickness rating (1=OK to 6=Vomiting), Motion Sickness Susceptibility Questionnaire (MSSQ), anti-motion sickness medication, prior Zero-G experience, anxiety level, and other characteristics. RESULTS Participants had lower MSSQ percentile scores 27.4+/-28.0 than the population norm of 50. Motion sickness was experienced by 33% and 12% vomited. Less motion sickness was predicted by older age, greater prior Zero-G flight experience, medication with scopolamine, lower MSSQ scores, but not gender nor anxiety. Sickness ratings in fliers pre-treated with scopolamine (1.81+/-1.58) were lower than for non-medicated fliers (2.93+/-2.16), and incidence of vomiting in fliers using scopolamine treatment was reduced by half to a third. Possible confounding factors including age, sex, flight experience, MSSQ, could not account for this. CONCLUSION Motion sickness affected one third of Zero-G fliers, despite being intrinsically less motion sickness susceptible compared to the general population. Susceptible individuals probably try to avoid such a provocative environment. Risk factors for motion sickness included younger age and higher MSSQ scores. Protective factors included prior Zero-G flight experience (habituation) and anti-motion sickness medication.