143 resultados para hyperglycaemia
Resumo:
Objective: To establish if hyperglycaemia and cardiac Troponin I (cTnI) after congenital heart surgery on cardiopulmonary bypass in children could predict outcome in intensive care unit. Methods: retrospective cohort study including 274 children (mean age 4.6 years; range 0 - 17 years-old). CTnI and glucose values were retrieved from our database. Integrated values (area under the curve (AUC)) were calculated for evaluation of sustained hyperglycaemia and then normalised per hour (48h-Gluc/h). Maximal cTnI, fi rst glucose value (Gluc1) and 48h-Gluc/h were then correlated with duration of mechanical ventilation, ICU stay and mortality using cut-off values. Results: The mean duration of mechanical ventilation was 5.1 ± 7.2 days and ICU stay was 11.0 ± 13.3 days, 11 patients (3.9%) died. Hyperglycaemia (>6.1 mmol/l) was present in 68% of children at admission and was sustained in 85% for 48 hours. The mean value of Gluc1 (7.3 ± 2.7 vs. 11.8 ± 6.4 mmol/l, p < 0.0001), 48h-Gluc/h (7.4 ± 1.4 vs. 9.9 ± 4.6 mmol/l/h, p < 0.0001) and cTnI max (16.7 ± 21.8 vs. 59.2 ± 41.4 mcg/l, p < 0.0001) were signifi cantly lower in survivors vs. non survivors. Cut-off values and odds ratio are summarised in Table 1. Analyses for duration of mechanical ventilation and for length of stay in ICU are depicted in Table 2. Conclusions: Hyperglycaemia is frequent after cardiopulmonary bypass and sustained in the fi rst 48 hours. Admission glycaemia and cTnI max are associated with a high risk of mortality, prolonged duration of mechanical ventilation and prolonged length of stay in ICU.
Resumo:
BACKGROUND & AIMS By means of this update, the GARIN working group aims to define its position regarding the treatment of patients with diabetes or stress hyperglycaemia and artificial nutrition. In this area there are many aspects of uncertainty, especially in non-critically ill patients. METHODS Bibliographical review, and specific questions in advance were discussed and answered at a meeting in the form of conclusions. RESULTS We propose a definition of stress hyperglycaemia. The indications and access routes for artificial nutrition are no different in patients with diabetes/stress hyperglycaemia than in non-diabetics. The objective must be to keep pre-prandial blood glucose levels between 100 and 140 mg/dl and post-prandial levels between 140 and 180 mg/dl. Hyperglycemia can be prevented through systematic monitoring of capillary glycaemias and adequately calculate energy-protein needs. We recommend using enteral formulas designed for patients with diabetes (high monounsaturated fat) to facilitate metabolic control. The best drug treatment for treating hyperglycaemia/diabetes in hospitalised patients is insulin and we make recommendations for adapt the theoretical insulin action to the nutrition infusion regimen. We also addressed recommendations for future investigation. CONCLUSIONS This recommendations about artificial nutrition in patients with diabetes or stress hyperglycaemia can add value to clinical work.
Resumo:
Aims/hypothesis We assessed systemic and local muscle fuel metabolism during aerobic exercise in patients with type I diabetes at euglycaemia and hyperglycaemia with identical insulin levels.Methods This was a single-blinded randomised crossover study at a university diabetes unit in Switzerland. We studied seven physically active men with type I diabetes (mean +/- SEM age 33.5 +/- 2.4 years, diabetes duration 20.1 +/- 3.6 years, HbA(1c) 6.7 +/- 0.2% and peak oxygen uptake [VO2peak] 50.3 +/- 4.5 ml min(-1) kg(-1)). Men were studied twice while cycling for 120 min at 55 to 60% of VO2peak, with a blood glucose level randomly set either at 5 or 11 mmol/l and identical insulinaemia. The participants were blinded to the glycaemic level; allocation concealment was by opaque, sealed envelopes. Magnetic resonance spectroscopy was used to quantify intramyocellular glycogen and lipids before and after exercise. Indirect calorimetry and measurement of stable isotopes and counter-regulatory hormones complemented the assessment of local and systemic fuel metabolism.Results The contribution of lipid oxidation to overall energy metabolism was higher in euglycaemia than in hyperglycaemia (49.4 +/- 4.8 vs 30.6 +/- 4.2%; p<0.05). Carbohydrate oxidation accounted for 48.2 +/- 4.7 and 66.6 +/- 4.2% of total energy expenditure in euglycaemia and hyperglycaemia, respectively (p<0.05). The level of intramyocellular glycogen before exercise was higher in hyperglycaemia than in euglycaemia (3.4 +/- 0.3 vs 2.7 +/- 0.2 arbitrary units [AU]; p<0.05). Absolute glycogen consumption tended to be higher in hyperglycaemia than in euglycaemia (1.3 +/- 0.3 vs 0.9 +/- 0.1 AU). Cortisol and growth hormone increased more strongly in euglycaemia than in hyperglycaemia (levels at the end of exercise 634 52 vs 501 +/- 32 nmol/l and 15.5 +/- 4.5 vs 7.4 +/- 2.0 ng/ml, respectively; p<0.05).Conclusions/interpretation Substrate oxidation in type I diabetic patients performing aerobic exercise in euglycaemia is similar to that in healthy individuals revealing a shift towards lipid oxidation during exercise. In hyperglycaemia fuel metabolism in these patients is dominated by carbohydrate oxidation. Intramyocellular glycogen was not spared in hyperglycaemia.
Resumo:
Abstract Objective: Studies have started to question whether a specific component or combinations of metabolic syndrome (MetS) components may be more important in relation to cardiovascular disease risk. Our aim was to examine the impact of the presence of raised fasting glucose as a MetS component on postprandial lipaemia. Methods: Men classified with the MetS underwent a sequential test meal investigation, in which blood samples were taken at regular intervals after a test breakfast (t=0 min) and lunch (t=330 min). Lipids, glucose and insulin were measured in the fasting and postprandial samples. Results: MetS subjects with 3 or 4 components were subdivided into those without (n=34) and with (n=23) fasting hyperglycaemia (≥ 5.6 mmol/l), irrespective of the combination of components. Fasting lipids and insulin were similar in the two groups, with glucose significantly higher in the men with glucose as a MetS component (P<0.001). Following the test meals, there was a higher maximum concentration (maxC), area under the curve (AUC) and incremental AUC (P≤0.016) for the postprandial triacylglycerol (TAG) response in men with fasting hyperglycaemia. Greater glucose AUC (P<0.001) and insulin maxC (P=0.010) was also observed in these individuals after the test meals. Multivariate regression analysis revealed fasting glucose to be an important predictor of the postprandial TAG and glucose response. Conclusion: Our data analysis has revealed a greater impairment of postprandial TAG than glucose response in MetS subjects with raised fasting glucose. The worsening of postprandial lipaemic control may contribute to the greater CVD risk reported in individuals with MetS component combinations which include hyperglycaemia.
Resumo:
Exposure to a high glucose medium or diabetes has been found to protect the heart against ischaemia. The activation of antiapoptotic and proliferative factors seems to be involved in this cardioprotection. This study was designed to evaluate the role of hyperglycaemia in cardiac function, programmed cell survival, and cell death in diabetic rats after myocardial infarction (MI). Male Wistar rats were divided into four groups (n = 8): control (C), diabetic (D), myocardial infarcted (MI), and diabetic myocardial infarcted (DI). The following measures were assessed in the left ventricle: size of MI, systolic and diastolic function by echocardiography, cytokines by ELISA (TNF-alpha, IL-1 beta, IL-6, and IL-10), gene expression by real-time PCR (Bax, Fas, p53, Bcl-2, HIF1-alpha, VEGF, and IL8r), caspase-3 activity by spectrofluorometric assay, glucose transporter type 1 and 4 (GLUT-1 and GLUT-4) protein expression by western blotting, and capillary density and fibrosis by histological analysis. Systolic function was improved by hyperglycaemia in the DI group, and this was accompanied by no improvement in diastolic dysfunction, a reduction of 36% in MI size, reduced proinflammatory cytokines, apoptosis activation, and an increase in cell survival factors (HIF1-alpha, VEGFa and IL8r) assessed 15 days post-MI. Moreover, hyperglycaemia resulted in angiogenesis (increased capillary density) before and after MI, accompanied by a reduction in fibrosis. Together, these results suggest that greater plasticity and cellular resistance to ischaemic injury result from chronic diabetic hyperglycaemia in rat hearts.
Resumo:
Objective The aims of this study were to evaluate the prevalence of metabolic syndrome (MS) in a cohort of pregnant women with a wide range of glucose tolerance, pre-pregnancy risk factors for MS during pregnancy and the effects of MS in the occurrence of adverse perinatal outcomes.Research Design and Methods One hundred and thirty six women with positive screening for gestational diabetes (GDM) were classified by two diagnostic methods: glycaemic profile and 100 g oral glucose tolerance test (OGTT) as normoglycaemic, mild gestational hyperglycaemic, GDM, and overt GDM. Markers of insulin resistance were measured between 24-28 and 36th week of gestation, and 6 weeks after delivery.Results The prevalence of MS was 0; 20.0; 23.5 and 36.4% in normoglycaemic, mild hyperglycaemic, GDM and overt GDM groups, respectively. Previous history of GDM with or without insulin use, body mass index (BMI) >= 25, hypertension, family history of diabetes in first-degree relatives, non-Caucasian ethnicity, history of prematurity and polyhydramnios were statistically significant pre-pregnancy predictors for MS in the index pregnancy, that by its turn increased the occurrence of adverse perinatal outcomes (p = 0.01).Conclusions The prevalence of MS increases with the worsening of glucose tolerance and is an independent predictor of adverse perinatal outcomes; impaired glycaemic profile identifies pregnancies with important metabolic abnormalities that are linked to the occurrence of adverse perinatal outcomes even in the presence of a normal OGTT, in patients that are not currently classified as having GDM. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Studies of diabetes mellitus in the streptozotocin rat model suggest that sexual dysfunctions may result from diabetes-induced alterations of the neuroendocrine-reproductive tract axis. Our investigation was performed to better define the effects of short-term hyperglycaemia on rat epididymal sperm quantity, quality and transit time, using both natural mating and artificial in utero insemination protocols. Male rats were made diabetic with streptozotocin (sc, 40 mg/kg), whereas controls received vehicle. Sexual behaviour was tested after 15 days and sperm fertilizing ability was checked 22 days after the injection through natural mating and artificial in utero insemination. Other parameters such as daily sperm production, testosterone levels, as well as sperm morphology and motility were also investigated. Fifty per cent of the diabetic animals showed no copulatory behaviour during tests and the number of animals reaching ejaculation was smaller in the diabetic group when compared with the control group (33% vs. 83%). Diabetes resulted in decreased body and reproductive organ weights, as well as diminished sperm counts in the testis and epididymis, that were associated with diminution of plasmatic testosterone levels. After natural mating, there was a decrease in the fertility in the diabetic adult male rats (25.5%) compared with control animals (81.5%). However, distal cauda epididymal sperm from diabetic rats displayed normal fertilization ability (91.5%) using in utero insemination. There were no effects of hyperglycaemia on sperm transit time in the epididymis and on spermatogenesis. Our results indicate that diabetes mellitus produces reproductive dysfunction, but does not compromise sperm fertilizing ability in the cauda epididymis in this experimental model.
Resumo:
This study examined whether sucrose-rich diet (SRD)-induced hyperglycaemia, dyslipidemia and oxidative stress may be inhibited by N-acetylcysteine (C5H9-NO3S), an organosulfur from Allium plants. Male Wistar 40 rats were divided into four groups (n = 10): (C) given standard chow and water; (N) receiving standard chow and 2 mg/l N-acetylcysteine in its drinking water; (SRD) given standard chow and 30% sucrose in its drinking water; and (SRD-N) receiving standard chow, 30% sucrose and N-acetylcysteine in its drinking water. After 30 days of treatment, SRD rats had obesity with increased abdominal circumference, hyperglycaemia, by dyslipidemia and hepatic triacylglycerol accumulation. These adverse effects were associated with oxidative stress and depressed lipid degradation in hepatic tissue. The SRD adverse effects were not observed in SDR-N rats. N-Acetylcysteine reduced the oxidative stress, enhancing glutathione-peroxidase activity, and normalizing lipid hydroperoxyde, reduced glutathione and superoxide dismutase in hepatic tissue of SRD-N rats. The beta-hydroxyacyl coenzyme-A dehydrogenase and citrate-synthase activities were increased in SRD-N rats, indicating enhanced lipid degradation in hepatic tissue as compared to SRD. SRD-N rats had reduced serum oxidative stress and diminished glucose, triacylglycerol, very-low-density lipoprotein (VLDL), oxidized low-density lipoprotein (alpha-LDL) and cholesterol/highdensity lipoprotein (HDL) ratio in relation to SRD. In conclusion, NAC offers promising therapeutic values in prevention of dyslipidemic profile and alleviation of hyperglycaemia in high-sucrose intake condition by improving antioxidant defences. N-Acetylcysteine had also effects preventing metabolic shifting in hepatic tissue, thus enhancing fat degradation and reducing body weight gain in conditions of excess sucrose intake. The application of this agent in food system via exogenous addition may be feasible and beneficial for antioxidant protection. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
This study examined whether high-sucrose intake effects on lipid profile and oral glucose tolerance may be inhibited by a single administration of digitonin, a saponin from the seeds of Digitalis purpurea Male Wistar 24 rats were initially divided into two groups (n = 12): (C) was given standard chow and water; (S) received standard chow and 30% sucrose in its drinking water. After 30 days of treatments, C rats were divided into two groups (n = 6): (CC) given an intra-gastric dose 0.5 mL saline, (CD) given a single intragastric dose of 15 mg/kg digitonin. S rats were also divided into two groups (n = 6): (SC) given intra-gastric saline and (SD) given digitonin. Rats were sacrificed after the oral glucose tolerance test (OGTT) at 2 h after the digitonin administration. S rats had higher total energy intake and final body weight than C. SC rats had fasting hyperglycaemia and impaired OGTT. Digitonin in SD group improved the glucose tolerance. Triacylglycerol (TG), very-low-density lipoprotein (VLDL-C) and free fatty acid (FFA) serum concentrations were increased in SD rats from CC. Digitonin in SD rats decreased FFA and led TG and VLDL-C concentrations at the levels observed in the CC group. Despite the enhanced cholesterol in CD group from CC., the high-density lipoprotein (HDL-C) was increased in these animals. HDL-C/TG ratio was higher in CD and SD than in CC and SC, respectively. No significant differences were observed in lipid hydroperoxide(LH) between the groups. VLDL-C/LH ratio and gamma-glutamyl transferase (GGT) activity were increased in SC group and were decreased in SD rats from the SC. In conclusion digitonin enhanced glucose tolerance and had beneficial effects on serum lipids by improve antioxidant activity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
To compare exercise-induced growth hormone (GH) response in patients with Type 1 diabetes during stable euglycaemic and hyperglycaemic conditions.
Resumo:
The goal of the study was to determine whether hyperglycaemia or hyperlipidaemia causes pancreatitis in cats and to assess the effect of excess serum glucose and lipids on amylase and lipase activity. Ten-day hyperglycaemic and hyperlipidaemic clamps were carried out in five and six healthy cats, respectively. Ten healthy cats received saline and served as controls. The activity of amylase was below the normal range in 4 of 5 hyperglycaemic cats by day 10. The activity of lipase did not vary in any of the cats. Samples of exocrine pancreas were normal on histological examination, but the number of tissue neutrophils was increased in hyperglycaemic cats (P<0.05). In a retrospective study 14 of 40 (35%) cats with naturally occurring diabetes mellitus had amylase activities below the reference range at the time of admission. Amylase activities normalised within 1 week of insulin therapy and subsequent glycaemic control. Lipase activity was increased in 26 of 40 (65%) diabetic cats and remained elevated despite glycaemic control. In conclusion, hyperglycaemia, but not hyperlipidaemia, increases pancreatic neutrophils in cats. However, because the histological morphology of the exocrine pancreas was normal, hyperglycaemia may play only a minor role in the pathogenesis of pancreatitis. Low amylase activities in diabetic cats may reflect an imbalance in glucose metabolism rather than pancreatitis.
Resumo:
Circumstantial evidence suggests that an increase in plasma glucose availability improves exercise capacity in subjects with type 1 diabetes mellitus. The aim of this study was to assess exercise capacity in eu- and hyperglycaemic conditions in subjects with type 1 diabetes.
Resumo:
We assessed systemic and local muscle fuel metabolism during aerobic exercise in patients with type 1 diabetes at euglycaemia and hyperglycaemia with identical insulin levels.