11 resultados para hydrosilane cocatalysts
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The selectivity of I-hexene metathesis using WCI6 as catalyst was evaluated with a series of hydrosilane-compounds as cocatalysts: Ph3SiH, Ph2SiH2, PhSiH3 and polymethylhydrosiloxane (PMHS). The metathesis reaction is favored by the addition of promoters. When in the presence of WCl4(OAr)(2), OAr = 2,6-dichlorophenoxide, 2,6-difluorophenoxide, olefin metathesis occurs with good selectivity without the use of promoters. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.
Resumo:
This thesis describes the preparation, characterization, and application of welldefined single-component group ten salicylaldimine complexes for the polymerization of ethylene to high molecular weight materials as well as the copolymerization of ethylene and functionalized olefins. After an initial introduction to the field, Chapter 2 describes the preparation of PPh3 complexes that contain a series of modified salicylaldimine and naphthaldimine ligands. Such complexes were activated for polymerization by the addition of cocatalysts such as Ni(COD)2 or B(C6F5)3. As the steric demand of the ligand set increased-the molecular weight, polymerization activity, and lifetime of the catalyst was observed to increase. In fact, complexes containing "bulky" ligands, such as the [Anthr,HSal] ligand (2.5), were found to be highly-active single component complexes for the polymerization of ethylene. Model hydrido compound were prepared-allowing for a better understanding of both the mechanism of polymerization and one mode of decomposition.
Chapter 3 describes the effect which additives play on neutral NiII polymerization catalysts such as 2.5. The addition of excess ethers, esters, ketones, anhydrides, alcohols, and water do not deactivate the catalysts for polymerization. However, the addition of excess acid, thiols, and phosphines was observed to shut-down catalysis. Since excess phosphine was found to inhibit catalysis, "phosphine-free" complexes, such as the acetonittile complex (3.26), were prepared. The acetonitrile complex was found to be the most active neutral polymerization catalyst prepared to date.
Chapter 4 outlines the use of catalyst 2.5 and 3.26 for the preparation of linear functionalized copolymers containing alcohols, esters, anhydrides, and ethers. Copolymers can be prepared with γ-functionalized-α-olefins, functionalized norbornenes, and functionalized tricyclononenes, with up to 30 mol% comonomer incorporation.
Chapter 5 outlines the preparation of a series of PtII alkyl/olefin salicylaldimine complexes which serve as models for the active species in the NiII-catalyzed polymerization process. Understanding the nature of the M-olefin interaction as a the electronic and steric properties of the salicylaldimine ligand is varied has allowed for a number of predictions about the design of future polymerization systems.
Resumo:
A series of binuclear neutral nickel and palladium complexes [(XC6H2CH=NC6H3-iPr(2))MRL](2) 4b-f (X=NO2, M=Ni, R=Ph, L=PPh3, 4b; X=H, M=Pd, R=Me, L=PPh3,4c; X=H,M=Pd, R=Me, L=Py, 4d; X=NO2,M=Pd, R=Me, L=PPh3, 4e; X=NO2, M=Pd, R=Me, L=Py, 4f) and [(C10H7CH=NC6H3-iPr(2))MRL](2) 8a-c (M=Ni, R=Ph, L=PPh3, 8a; M=Pd, R=Me, L=PPh3, 8b; M=Pd, R=Me, L=Py, 8c) have been synthesized and characterized. The structures of complexes 4e and 8b have also been confirmed by X-ray crystallographic analysis. With modified methylalummoxane (MMAO) as cocatalysts, these complexes and complex [(C6H3CH=NC6H3-iPr(2))NiPh(PPh3)](2) 4a are capable of catalyzing the addition polymerization of norbomene (NBE) with the high activity up to 2.3 x 10(8) g PNBE/(mol(M) h). The structure of complexes affects considerably catalytic activity towards norbomene polymerization. The polymers obtained with nickel complexes are soluble, while those obtained with palladium complexes are insoluble. Palladium complexes 4c, 4e and 8b bearing PPh3 ligands exhibit much higher activities than the corresponding complexes 4d, M and 8c bearing pyridine ligands under the same conditions.
Resumo:
Reaction of salts of the 2,5-disubstituted amino-p-benzoquinone bridging ligand (la-e) with trans-bis(triphenylphosphane)phenylnickel(II) chloride results in the binuclear complexes 2a-e, which show high activities for ethylene polymerization without any cocatalysts. High-molecular-weight, moderately branched polyethylene of broad molecular-weight distribution was obtained.
Resumo:
Poly(styrene-co-acrylamide) (PSAm)-titanium complexes (PSAm . Ti) were prepared and characterized. It is found that the coordination number of acrylamide (Am) to Ti in the complexes is strongly dependent on Am content in PSAm, but not on [Am]/[Ti] ratio in the feed. The infrared and x-ray photoelectron spectra suggest that the polymer-supported complexes possess the structure [GRAPHICS] The catalytic behavior of the complexes in styrene polymerization is described. The catalytic activity is markedly affected by [Al]/[Ti] ratio in the complexes. C-13 NMR, IR, and DSC data indicate that the polystyrene obtained with PSAm . Ti/MAO (MAO = methylaluminoxane) is highly syndiotactic. Use of Et(3)Al and i-Bu(3)Al in place of MAO gives atactic polystyrene. The activities of the various aluminum compounds used as the cocatalysts decrease in the order: MAO > Et(3)Al > i-Bu(3)Al. The polymer-supported complexes show relatively high activity even after the complexes had been exposed to air for 19 h or higher polymerization temperature. (C) 1996 John Wiley & Sons, Inc.
Resumo:
In this work is reported, in a first step, the effect of different experimental parameters and their relation with polymer properties using the homogeneous binary catalyst system composed by Ni(α-diimine)Cl2 (α-diimine = 1,4-bis(2,6-diisopropylphenyl)- acenaphthenediimine) and {TpMs*}V(Ntbu)Cl2 (TpMs* = hydridobis(3-mesitylpyrazol-1- yl)(5-mesitylpyrazol-1-yl)) activated with MAO. This complexes combination produces, in a single reactor, polyethylene blends with different and controlled properties dependent on the polymerization temperature, solvent and Nickel molar fraction (xNi). In second, the control of linear low density polyethylene (LLDPE) production was possible, using a combination of catalyst precursors {TpMs}NiCl (TpMs = hydridotris(3- mesitylpyrazol-1-yl)) and Cp2ZrCl2, activated with MAO/TMA, as Tandem catalytic system. The catalytic activities as well as the polymer properties are dependent on xNi. Polyethylene with different Mw and controlled branches is produced only with ethylene monomer. Last, the application group 3 metals catalysts based, M(allyl)2Cl(MgCl2)2.4THF (M = Nd, La and Y), in isoprene polymerization with different cocatalysts systems and experimental parameters is reported. High yields and polyisoprene with good and controlled properties were produced. The metal center, cocatalysts and the experimental parameters are determinant for the polymers properties and their control. High conversions in cis-1,4- or trans-1,4-polyisoprene were obtained and the polymer microstructure depending of cocatalyst and metal type. Combinations of Y and La precursors were effective systems for the cis/transpolyisoprene blends production, and the control of cis-trans-1,4-microstructures by Yttrium molar fraction (xY) variation was possible.
Resumo:
The immobilization of soluble catalyst {Tp(Ms)}TiCl3 (Tp(Ms*)HB(3-mesityl-pyrazolyl)(2)(5-mesityl-pyrazolyl)(-)) on silica and MAO-modified silicas containing 4.0, 8.0 and 23.0 wt.% Al/SiO2 yields active supported catalysts for ethylene polymerization. Among the supported catalysts studied by XRF spectroscopy, higher titanium content was obtained using MAO-modified silica containing 8.0 wt.% Al/SiO2 as support. For the ethylene polymerization reactions carried out in hexane at 60degreesC using a combination of triisobutylaluminum (TiBA) and methylaluminoxane (MAO) (1:1), the activities varied between 24.4 and 113.5 kg of PE/mol [Ti] h. The highest activity is reached using MAO-modified silica containing 4.0 wt.% Al/SiO2 as support. The viscosity-average molecular weights ((M) over bar (v)) of the PE's produced with the supported catalysts varying from 1.44 to 9.94 x 10(5) g/mol with melting temperatures in the range of 125-140degreesC. The use of other Lewis acid cocatalysts, including TiBA, diethylaluminium chloride (DEAC), and trimethylaluminum (TMA) resulted also in the formation of active catalysts for ethylene polymerization. However, the activities are lower than that one using a combination of TiBA and MAO. The viscosity-average molecular weights (R,) of PE's are influenced by varying the cocatalysts as well as the Al/Ti molar ratio. The supported catalyst generated in situ under ethylene atmosphere is roughly four times more active than supported one containing 4.0 wt.% Al/SiO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The reaction of TlTp' (Tp' = HB(3-mesitylpyrazolyl)(3)(-) (Tp(Ms)), HB(3-mesitylpyrazolyl)(2)(5-mesitylpyrazolyl)(-) (Tp(Ms)*)) with NiCl(2).6H(2)O affords Tp(Ms)NiCl (1) and Tp(Ms)*NiCl (2) in good yield. The compound 2 undergoes an isomerization process to form [{Tp(Ms)**}NiCl](2) (3) (Tp(Ms)** = HB(5-mesitylpyrazolyl)(2)(3-mesitylpyrazolyl)(-)) in 68% yield. Treatment of the tris(pyrazolyl)-borate nickel compounds 1 and 2 with alkylaluminum cocatalysts such as methylalumoxane (MAO) and trimethylaluminum (TMA) in toluene generates active catalysts for ethylene oligomerization. The compound 1 shows turnover frequencies in the range of (2.2-43.1) x 10(3) h(-1). Oligomerization reaction conditions can be adjusted that lead to selectivities as high as 81% for butene-1.
Resumo:
The main aim of the work presented in this dissertation was the morphology control in metallocene-catalyzed polyolefin synthesis. This was studied by selective immobilization techniques on a variety of supports such as porous polyurethane particles (Chapter 3), electrospun fibers (Chapter 4 and 5), inorganic-organic hybrid core-shell particles (Chapter 6) and hollow silica particles (Chapter 7). Another aspect of this dissertation was modulating a catalytic activity by controlling a size of boron-based cocatalysts (Chapter 8).