21 resultados para hydrophones
Resumo:
Department of Electronics, Cochin University of Science & Technology
Resumo:
The subspace intersection method (SIM) provides unbiased bearing estimates of multiple acoustic sources in a range-independent shallow ocean using a one-dimensional search without prior knowledge of source ranges and depths. The original formulation of this method is based on deployment of a horizontal linear array of hydrophones which measure acoustic pressure. In this paper, we extend SIM to an array of acoustic vector sensors which measure pressure as well as all components of particle velocity. Use of vector sensors reduces the minimum number of sensors required by a factor of 4, and also eliminates the constraint that the intersensor spacing should not exceed half wavelength. The additional information provided by the vector sensors leads to performance enhancement in the form of lower estimation error and higher resolution.
Resumo:
The science of fisheries acoustics and its applicability to resource management have evolved over the past several decades. This document provides a basic description of fisheries acoustics and recommendations on using this technology for research and monitoring of fish distributions and habitats within sanctuaries. It also describes recent efforts aimed at applying fisheries acoustics to Gray’s Reef National Marine Sanctuary (GRNMS) (Figure 1). Historically, methods to assess the underwater environment have included net trawls, diver censuses, hook and line, video, sonar and other techniques deployed in a variety of ways. Fisheries acoustics, using active sonar, relies on the physics of sound traveling through water to quantify the distribution of biota in the water column. By sending a signal of a given frequency through the water column and recording the time of travel and the strength of the reflected signal, it is possible to determine the size and location of fish and estimate biomass from the acoustic backscatter. As a fisheries assessment tool, active hydroacoustics technology is an efficient, non-intrusive method of mapping the water column at a very fine spatial and temporal resolution. It provides a practical alternative to bottom and mid-water trawls, which are not allowed at GRNMS. Passive acoustics, which uses underwater hydrophones to record man-made and natural sounds such as fish spawning calls and sounds produced by marine mammals for communication and echolocation, can provide a useful, complementary survey tool. This report primarily deals with active acoustics, although the integration of active and passive acoustics is addressed as well. (PDF contains 32 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop entitled, "Biological Platforms as Sensor Technologies and their Use as Indicators for the Marine Environment" was held in Seward, Alaska, September 19 - 21,2007. The workshop was co-hosted by the University of Alaska Fairbanks (UAF) and the Alaska SeaLife Center (ASLC). The workshop was attended by 25 participants representing a wide range of research scientists, managers, and manufacturers who develop and deploy sensory equipment using aquatic vertebrates as the mode of transport. Eight recommendations were made by participants at the conclusion of the workshop and are presented here without prioritization: 1. Encourage research toward development of energy scavenging devices of suitable sizes for use in remote sensing packages attached to marine animals. 2. Encourage funding sources for development of new sensor technologies and animal-borne tags. 3. Develop animal-borne environmental sensor platforms that offer more combined systems and improved data recovery methodologies, and expand the geographic scope of complementary fixed sensor arrays. 4. Engage the oceanographic community by: a. Offering a mini workshop at an AGU ocean sciences conference for people interested in developing an ocean carbon program that utilizes animal-borne sensor technology. b. Outreach to chemical oceanographers. 5. Min v2d6.sheepserver.net e and merge technologies from other disciplines that may be applied to marine sensors (e.g. biomedical field). 6. Encourage the NOAA Permitting Office to: a. Make a more predictable, reliable, and consistent permitting system for using animal platforms. b. Establish an evaluation process. c. Adhere to established standards. 7. Promote the expanded use of calibrated hydrophones as part of existing animal platforms. 8. Encourage the Integrated Ocean Observing System (IOOS) to promote animal tracking as effective samplers of the marine environment, and use of animals as ocean sensor technology platforms. [PDF contains 20 pages]
Resumo:
Os delfinídeos possuem um variado repertório de emissões sonoras, que são produzidos em diferentes contextos comportamentais e são importantes para as relações entre os indivíduos. As emissões sonoras dos delfinídeos são predominantemente utilizadas para a comunicação e são divididas em duas categorias: os sons pulsantes e os assobios. O presente estudo apresenta comparações entre os repertórios de assobios de três espécies de delfinídeos encontrados na costa do Estado do Rio de Janeiro: Stenella frontalis, Steno bredanensis e Sotalia guianensis. Três sistemas de gravação foram utilizados. Estes foram compostos por hidrofones HTI-96-MIN e C54XRS, e gravadores PMD 671 Marantz, FOSTEX (taxa de amostragem de 96 kHz) e SONY TCD-T8 (taxa de amostragem de 48 kHz). As análises dos espectrogramas foram realizadas no software Raven 1.4. Os assobios foram classificados em categorias de formas de contorno e 15 parâmetros acústicos foram mensurados em cada um destes sinais. A estatística descritiva foi realizada para os assobios de cada espécie, e estes foram comparados a partir de testes de comparação de médias e análise discriminante. Um total de 838 assobios foi analisado. Assobios com forma de contorno ascendente de S. frontalis, S. bredanensis, S. guianensis da Baía de Guanabara, da Baía de Ilha Grande e da Baía de Sepetiba corresponderam a 48,1% (N=63), 40,8% (N=47), 49,8% (N=98), 63,9% (N=126) e 58,1% (N=115) do repertório de cada grupo, respectivamente. Diferenças foram encontradas em praticamente todos os parâmetros entre assobios de S. bredanensis e S. guianensis. O maior número de semelhanças ocorreu entre assobios das populações distintas de S. guianensis. A taxa de classificação correta geral foi de 52,4%. Assobios de S. bredanensis apresentaram a maior classificação correta (84,3%). Assobios de S. frontalis apresentaram taxa de classificação correta de 55,7% e os de S. guianensis da Baía de Guanabara, Baía de Ilha Grande e Baía de Sepetiba apresentaram taxas de 57,9%, 48,7% e 29,8%, respectivamente. A análise discriminante realizada entre assobios ascendentes resultou em uma taxa de classificação correta menor (49%). As variáveis consideradas mais importantes para a discriminação entre espécies foram: FF, 3Q, 1Q, MOD e FM. Por meio de parâmetros acústicos foi possível discriminar grande parte dos assobios de espécies simpátricas, apesar de haver ainda sobreposições entre variáveis acústicas dos assobios das espécies comparadas neste estudo.
Resumo:
We determined the dis-tribution of multiple (n=68; 508−978 mm total length [TL]) striped bass (Morone saxatilis) along the estua-rine salinity gradient in the Mullica River−Great Bay in southern New Jersey over two years to determine the diversity of habitat use and the movements of striped bass. Ultrasoni-cally tagged fish were detected in this estuarine area by means of wireless hydrophones deployed at four gates inside the entrance of the study area and farther up to tidal freshwater (38 km). Numerous individuals frequently departed and returned to the estuary, primarily in the spring and late fall over periods of 15−731 days at liberty. The period of residency and degree of movement of individuals to and from the estuary varied extensively among seasons and years. The diversity of movements in and out of, as well as within, the estuary differed from the less-complex patterns reported in earlier studies, perhaps because of the comprehensive and synoptic nature of this study.
Resumo:
Cetaceans produce sound signals frequently. Usually, acoustic localization of cetaceans was made by cable hydrophone arrays and multichannel recording systems. In this study, a simple and relatively inexpensive towed acoustic system consisting of two miniature stereo acoustic data-loggers is described for localization and tracking of finless porpoises in a mobile survey. Among 204 porpoises detected acoustically, 34 individuals (similar to 17%) were localized, and 4 of the 34 localized individuals were tracked. The accuracy of the localization is considered to be fairly high, as the upper bounds of relative distance errors were less than 41% within 173 m. With the location information, source levels of finless porpoise clicks were estimated to range from 180 to 209 dB re 1 mu Pa pp at 1 m with an average of 197 dB (N=34), which is over 20 dB higher than that estimated previously from animals in enclosed waters. For the four tracked porpoises, two-dimensional swimming trajectories relative to the moving survey boat, absolute swimming speed, and absolute heading direction are deduced by assuming the animal movements are straight and at constant speed in the segment between two consecutive locations.
Resumo:
Source levels and phonation intervals of whistles produced by a free-ranging baiji (Chinese river dolphin) were measured in the seminatural reserve of Shishou in Hubei, China. A total of 43 whistles were recorded over 12 recording sessions. The mean dominant frequency (the frequency at the highest energy) was 5.7 kHz (s.d.=0.67). The calculated source level was 143.2 dB rms re 1 mu Pa (s.d.=5.8). Most phonation intervals were shorter than 460 s, and the average interval was 205 s (s.d. = 254). Theoretical detection range of baiji's whistle was 6600 m at the present study site, but it could reduce a couple of hundred meters in practical noisy situation in the Yangtze River. Sporadic phonation (205 s interval on average) with relatively faint signal of baiji was considered, to be difficult to be detected by a towing hydrophone system. Stationed monitoring or slow speed towing of hydrophones along the river current is recommended. (c) 2006 Acoustical Society of America.
Resumo:
Recently, sonar signals and other sounds produced by cetaceans have been used for acoustic detection of individuals and groups in the wild. However, the detection probability ascertained by concomitant visual survey has not been demonstrated extensively. The finless porpoises (Neophocaena phocaenoides) have narrow band and high-frequency sonar signals, which are distinctive from background noises. Underwater sound monitoring with hydrophones (B&K8103) placed along the sides of a research vessel, concurrent with visual observations was conducted in the Yangtze River from Wuhan to Poyang Lake in 1998 in China. The peak to peak detection threshold was set at 133 dB re 1 mu Pa. With this threshold level, porpoises could be detected reliably within 300 m of the hydrophone. In a total of 774-km cruise, 588 finless porpoises were sighted by visual observation and 44 864 ultrasonic pulses were recorded by the acoustical observation system. The acoustic monitoring system could detect the presence of the finless porpoises 82% of the time. A false alarm in the system occurred with a frequency of 0.9%. The high-frequency acoustical observation is suggested as an effective method for field surveys of small cetaceans, which produce high-frequency sonar signals. (C) 2001 Acoustical Society of America.
Resumo:
In this paper, we present a theoretical approach to optimize the design of a fiber optic hydrophone based on a flat diaphragm and multilayer fiber coils. In this theoretical analysis, both the radial and tangential strain induced fiber length changes are taken into account. The result shows that the position of the fiber coils and the number of the fiber layers have significant effects on the sensitivity, of the hydrophone. By optimizing these parameters, a higher sensitivity can be achieved. Sample hydrophones are fabricated and tested. The experimental result is in good agreement with the theoretical result, which shows this theoretical approach is effective in optimizing the design of the fiber optic hydrophone. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Vector sensors measure both the acoustic pressure and the three components of particle velocity. Because of this, a vector sensor array (VSA) has the advantage of being able to provide substantially higher directivity with a much smaller aperture than an array of traditional scalar (pressure only) hydrophones. Although several, most of them theoretic, works were published from early nineties, only in the last years due to improvements and availability of vector sensor technology, the interest on field experiments with VSA increased in the scientific community. During the Makai Experiment, that took place off the coast of Kauai I., Hawaii, in September 2005, real data were collected with a 4 element vertical VSA. These data will be discussed in the present paper. The acoustic signals were emitted from a near source (low frequency ship noise) and two high frequency controlled acoustic sources located within a range of 2km from the VSA. The advantages of the VSA over traditional scalar hydrophone arrays in source localization will be addressed using conventional beamforming.
Resumo:
This paper describes the results of AcousticRobot'13 - a noise measurement campaign that took place off the Portuguese Coast in May 2013, using two high endurance autonomous vehicles capable of silent operation (an underwater glider and an autonmomous sailing vessel) equipped with hydrophones, and a moored hydrophone that served as reference. We show that the autonomous vehicles used can provide useful measurements of underwater noise, and describe the main advantages and shortcomings that became evident during the campaign.
Resumo:
New mathematical methods to analytically investigate linear acoustic radiation and scattering from cylindrical bodies and transducer arrays are presented. Three problems of interest involving cylinders in an infinite fluid are studied. In all the three problems, the Helmholtz equation is used to model propagation through the fluid and the beam patterns of arrays of transducers are studied. In the first problem, a method is presented to determine the omni-directional and directional far-field pressures radiated by a cylindrical transducer array in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The displacement of the surface of each transducer is in the direction of the normal to the array and is assumed to be uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that the uniform displacement required for generating a source level of 220 dB ref. μPa @ 1m that is omni directional in the azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are presented to show that there is only a small difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays. The problem is of interest because cylindrical arrays of projectors are often used to search for underwater objects. In the second problem, the errors, when using data-independent, classical, energy and split beam correlation methods, in finding the direction of arrival (DOA) of a plane acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near a linear array of hydrophones, are investigated. Scattering from the effectively infinite cylinder is modeled using the exact axisymmetric equations of motion and the total pressures at the hydrophone locations are computed. The effect of the radius of the cylinder, a, the distance between the cylinder and the array, b, the number of hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in finding the DOA are illustrated using numerical results. For an array that is about 30 times the wavelength and for small angles of incidence (α<10), the error in finding the DOA using the energy method is less than that using the split beam correlation method with beam steered to α; and in some cases, the error increases when b increases; and the errors in finding the DOA using the energy method and the split beam correlation method with beam steered to α vary approximately as a7 / 4 . The problem is of interest because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to protect arrays of transducers – scatter waves that are incident on it and cause an error in the estimated direction of arrival of the wave. In the third problem, a high-frequency ray-acoustics method is presented and used to determine the interior pressure field when a plane wave is normally incident on a fluid cylinder embedded in another infinite fluid. The pressure field is determined by using geometrical and physical acoustics. The interior pressure is expressed as the sum of the pressures due to all rays that pass through a point. Numerical results are presented for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the radius of the cylinder. The results are in good agreement with those obtained using field theory. The directional responses, to the plane wave, of sectors of a circular array of uniformly distributed hydrophones in the embedded cylinder are then computed. The sectors are used to simulate linear arrays with uniformly distributed normals by using delays. The directional responses are compared with the output from an array in an infinite homogenous fluid. These outputs are of interest as they are used to determine the direction of arrival of the plane wave. Numerical results are presented for a circular array with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest because arrays of hydrophones are housed inside sonar domes and acoustic plane waves from distant sources are scattered by the dome filled with fresh water and cause deterioration in the performance of the array.
Resumo:
Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.