158 resultados para hydrophilicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In paper has been to investigate the morphological patterns and kinetics of PDMS spreading on silicon wafer using combination of techniques like ellipsometry, atomic force microscope (AFM), scanning electron microscope (SEM) and optical microscopy. A macroscopic silicone oil drops as well as PDMS water based emulsions were studied after deposition on a flat surface of silicon wafer in air, water and vacuum. our own measurements using an imaging ellipsometer, which also clearly shows the presence of a precursor film. The diffusion constant of this film, measured with a 60 000 cS PDMS sample spreading on a hydrophilic silicon wafer, is Df = 1.4  10-11 m2/s. Regardless of their size, density and method of deposition, droplets on both types of wafer (hydrophilic and hydrophobic) flatten out over a period of many hours, up to 3 days. During this process neighbouring droplets may coalesce, but there is strong evidence that some of the PDMS from the droplets migrates into a thin, continuous film that covers the surface in between droplets. The thin film appears to be ubiquitous if there has been any deposition of PDMS. However, this statement needs further verification. One question is whether the film forms immediately after forced drying, or whether in some or all cases it only forms by spreading from isolated droplets as they slowly flatten out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of dendrimers, the poly(propyl ether imine) (PETIM) dendrimer, has been shown to be a novel hyperbranched polymer having potential applications as a drug delivery vehicle. Structure and dynamics of the amine terminated PETIM dendrimer and their changes with respect to the dendrimer generation are poorly understood. Since most drugs are hydrophobic in nature, the extent of hydrophobicity of the dendrimer core is related to its drug encapsulation and retention efficacy. In this study, we carry out fully atomistic molecular dynamics (MD) simulations to characterize the structure of PETIM (G2-G6) dendrimers in salt solution as a function of dendrimer generation at different protonation levels. Structural properties such as radius of gyration (R-g), radial density distribution, aspect ratio, and asphericity are calculated. In order to assess the hydrophilicity of the dendrimer, we compute the number of bound water molecules in the interior of dendrirner as well as the number of dendrimer-water hydrogen bonds. We conclude that PETIM dendrimers have relatively greater hydrophobicity and flexibility when compared with their extensively investigated PAMAM counterparts. Hence PETIM dendrimers are expected to have stronger interactions with lipid membranes as well as improved drug encapsulation and retention properties when compared with PAMAM dendrimers. We compute the root-mean-square fluctuation of dendrimers as well as their entropy to quantify the flexibility of the dendrimer. Finally we note that structural and solvation properties computed using force field parameters derived based on the CHARMM general purpose force field were in good quantitative agreement with those obtained using the generalized Amber force field (GAFF).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of PLA fabric has been successfully modified by pulsed plasma polymerization of heptylamine (PPHA) giving increased hydrophilicity and achieving a sufficient level of primary amine functionality (3.5%) for practical application in biotechnology. This is the first report that the density of primary amine (-NH2) in PPHA, quantified by chemical derivatization, can be controlled by selection of pulsed plasma conditions. The duty cycle and the average RF power were the key parameters for achieving both a higher density of primary amine and increased hydrophilicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we demonstrate that fabrics having a wettability gradient from superhydrophobic to hydrophilic through the thickness direction show a novel directional water transfer effect: water can transfer only from the superhydrophobic to the hydrophilic side, but not in the opposite direction unless an external force is applied. A sol-gel technology was used to prepare a superhydrophobic coating on fabrics, and the coated fabrics showed water contact-angle as high as 165°. When the coated fabric was subjected to a photochemistry treatment from one fabric side, the irradiated surface turned hydrophilic permanently, while the back side still maintained the superhydrophobicity. The treated fabric can transfer water droplet rapidly from hydrophobic to hydrophilic side, and the pressure allowing water breakthrough the fabric is different considerably between the two fabric sides. The directional water transfer effect is also affected by the wettability gradient. Such a directional water transfer coating may be useful to develop new functional fabrics for defence applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg alloys are attractive candidate materials for biodegradable stents. However, there are few commercially available Mg-based stents in clinical use because Mg alloys generally undergo rapid localized corrosion in the body. In this study, we report a new surface coating for Mg alloy AZ31 based on a low-toxicity ionic liquid (IL), tributyl(methyl)phosphonium diphenyl phosphate (P1,4,4,4 dpp), to control its corrosion rate. Emphasis is placed on the effect of treatment temperature. We showed that enhancing the treatment temperature provided remarkable improvements in the performances of both corrosion resistance and biocompatibility. Increasing treatment temperature resulted in a thicker (although still nanometer scale) and more homogeneous IL film on the surface. Scanning electron microscopy and optical profilometry observations showed that there were many large, deep pits formed on the surface of bare AZ31 after 2 h of immersion in simulated body fluid (SBF). The IL coating (particularly when formed at 100 °C for 1 h) significantly suppressed the formation of these pits on the surface, making corrosion occur more uniformly. The P1,4,4,4 dpp IL film formed at 100 °C was more hydrophilic than the bare AZ31 surface, which was believed to be beneficial for avoiding the deposition of the proteins and cells on the surface and therefore improving the biocompatibility of AZ31 in blood. The interaction mechanism between this IL and AZ31 was also investigated using ATR-FTIR, which showed that both anion and cation of this IL were present in the film, and there was a chemical interaction between dpp(-) anion and the surface of AZ31 during the film formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of deacetylated xanthan gum, additives (sucrose, soybean oil, sodium phosphate and propylene glycol) and pH modifications on mechanical properties, hydrophilicity and water activity of cassava starch-xanthan gum films has been studied. Sucrose addition resulted in the highest effect observed on cassava starch films elongation at break. The deacetylated xanthan gum had higher effect on elongation at break when comparing to the acetylated gum, although both gums presented an inferior effect in relation to the obtained with sucrose. However, when comparing to the control and PVC films, lower tensile strength resistance values were observed when adding sucrose. Increased water activity was observed for films added with sucrose, thus, increasing the material biodegradation. Sucrose and deacetylated xanthan gum addition resulted in a slight hydrophilicity increase. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the transdentinal cytotoxicity of experimental adhesive systems (EASs) with different hydrophilicity and dentin saturation solutions on odontoblast-like cells. One hundred 0.4-mm-thick dentin discs were mounted in in vitro pulp chambers and assigned to 10 groups. MDPC-23 cells were seeded onto the pulpal side of the discs, incubated for 48 h. The EASs with increasing hydrophilicity (R1, R2, R3 and R4) were applied to the occlusal side after etching and saturation of etched dentin with water or ethanol. R0 (no adhesive) served as controls. R1 is a non-solvated hydrophobic blend, R2 is similar to a simplified etch-and-rinse adhesive system and R3 and R4 are similar to self-etching adhesives. After 24 h, cell metabolism was evaluated by MTT assay (n = 8 discs) and cell morphology was examined by SEM (n = 2 discs). Type of cell death was identified by flow cytometry and the degree of monomer conversion (%DC) was determined by infrared spectroscopy (FTIR) after 10 s or 20 s of photoactivation. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Dentin saturation with ethanol resulted in higher necrotic cell death ratios for R2, R3 and R4 compared with water saturation, although R2 and R3 induced higher SDH production. Photoactivation for 20 s significantly improved the %DC of all EASs compared with 10 s. A significant positive correlation was observed between the degree of hydrophilicity and %DC. In conclusion, except for R1, dentin saturation with ethanol increased the cytotoxicity of EASs, as expressed by the induction of necrotic cell death. © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To assess the microshear bond strength of 3 experimental adhesives with different degrees of hydrophilicity after 1, 7 and 90 days of storage. Materials and Methods: The bonding effectiveness of three experimental two-step etch-and-rinse adhesives (bis-GMA, bis-EMA/bis-GMA, polybutadiene [C6H12]) and one commercial adhesive (Single Bond) to sound hydrated dentin was determined using the nnicroshear test with delimitation of the adhesive area after 1, 7, and 90 days of storage in water at 37 degrees C. Two-way ANOVA was performed at the 0.05 probability level. The fractures were classified as adhesive, cohesive in dentin, cohesive in resin, and mixed. Results: The experimental adhesives showed values in the range of 11.31 to 12.96 MPa, with polybutadiene (PBH) showing the lowest bond strengths, bis-GMA the highest, and bis-EMA/bis-GMA intermediary values. Single Bond yielded bond strengths of approximately 24 MPa. Water storage decreased the bond strength in all adhesives. Adhesive fractures were predominant in experimental adhesives, while mixed fractures were the most frequent type in the Single Bond group. Conclusion: The experimental dentin adhesives of this study were able to form resin tags, but they could not penetrate into the collagen fibers and form hybrid layers. The resulting low bond strength decreased with increasing length of storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems of wool as an important proteinous fiber is low resistance against alkali media. Finding a way to solve this problem without any influences on other fiber characteristics is still a matter of research. Using nano particles on textile materials is a new approach to produce novel properties. Here, nano titanium dioxide (NTO) particles along with butane tetra carboxylic acid (BTCA) were sonicated in the ultra sound bath and applied as a nano colloid on the wool fabric. BTCA played different roles as wool cross-linker, a polyanionic agent, and stabilizer for nano TiO2. Various concentrations of NTO and BTCA were applied through impregnation of the fabric in ultrasonic bath followed by curing. The resistance of fabrics against alkali was assessed by solubility in sodium hydroxide and the hydrophilicity monitored by the water drop absorption time and the contact angle before and after UV irradiation. Interestingly, the alkali solubility of the nano TiO2 treated wool fabrics reduced while the fabric became more hydrophilic. This fact was shown by the testing results and is thoroughly discussed in the article. The response surface methodology (RSM) was also applied to find the optimum conditions for the wool fabric treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer networks were prepared by photocross-linking fumaric acid monoethyl ester (FAME) functionalized, three-armed poly(D,L-lactide) oligomers using Af-vinyl-2-pyrrolidone (NVP) as diluent and comonomer. The use of NVP together with FAME-functionalized oligomers resulted in copolymerization at high rates, and networks with gel contents in excess of 90 were obtained. The hydrophilicity of the poly(D,L-lactide) networks increases with increasing amounts of NVP, networks containing 50 wt of NVP absorbed 40 of water. As the amount of NVP was increased from 30 to 50 wt , the Young's modulus after equilibration in water decreased from 0.8 to 0.2 GPa, as opposed to an increase from 1.5 to 2.1 GPa in the dry state. Mouse preosteoblasts readily adhered and spread onto all prepared networks. Using stereolithography, porous structures with a well-defined gyroid architecture were prepared from these novel materials. This allows the preparation of tissue engineering scaffolds with optimized pore architecture and tunable material properties.