998 resultados para hydrological response
Resumo:
This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example - change in summer runoff at a 2oC increase in global mean temperature varying between -40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1oC, but there are differences between catchments. Based on the scenarios represented in the ensemble, the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.
Resumo:
Copyright © 2016 Fuxing Li et al.The sensitivity of hydrologic variables in East China, that is, runoff, precipitation, evapotranspiration, and soil moisture to the fluctuation of East Asian summer monsoon (EASM), is evaluated by the Mann-Kendall correlation analysis on a spatial resolution of 1/4° in the period of 1952-2012. The results indicate remarkable spatial disparities in the correlation between the hydrologic variables and EASM. The regions in East China susceptible to hydrological change due to EASM fluctuation are identified. When the standardized anomaly of intensity index of EASM (EASMI) is above 1.00, the runoff of Haihe basin has increased by 49% on average, especially in the suburb of Beijing and Hebei province where the runoff has increased up to 105%. In contrast, the runoff in the basins of Haihe and Yellow River has decreased by about 27% and 17%, respectively, when the standardized anomaly of EASMI is below -1.00, which has brought severe drought to the areas since mid-1970s. The study can be beneficial for national or watershed agencies developing adaptive water management strategies in the face of global climate change.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Gully erosion occurs by the combined action of splash, sheetwash and rill-wash (interrill and rill erosion). These erosion processes have a great capacity for both sediment production and sediment transport. The objectives of this experiment were to evaluate hydrological and sediment transport in a degraded area, severely dissected by gullies; to assess the hydraulic flow characteristics and their aggregate transport capacity; and to measure the initial splash erosion rate. In the study area in Guarapuava, State of Paraná, Brazil (lat 25º 24' S; long 51º24' W; 1034 m asl), the soil was classified as Cambissolo Húmico alumínico, with the following particle-size composition: sand 0.116 kg kg-1; silt 0.180 kg kg-1; and clay 0.704 kg kg-1. The approach of this research was based on microcatchments formed in the ground, to study the hydrological response and sediment transport. A total of eight rill systems were simulated with dry and wet soil. An average rainfall of 33.7 ± 4.0 mm was produced for 35 to 54 min by a rainfall simulator. The equipment was installed, and a trough was placed at the end of the rill to collect sediments and water. During the simulation, the following variables were measured: time to runoff, time to ponding, time of recession, flow velocity, depth, ratio of the initial splash and grain size. The rainsplash of dry topsoil was more than twice as high as under moist conditions (5 g m-2 min-1 and 2 g m-2 min-1, respectively). The characteristics of the flow hydraulics indicate transition from laminar to turbulent flow [Re (Reynolds number) 1000-2000]. In addition, it was observed that a flow velocity of 0.12 m s-1 was the threshold for turbulent flow (Re > 2000), especially at the end of the rainfall simulation. The rill flow tended to be subcritical [Fr (Froude Number) < 1.0]. The variation in hydrological attributes (infiltration and runoff) was lower, while the sediment yield was variable. The erosion in the rill systems was characterized as limited transport, although the degraded area generated an average of 394 g m-2 of sediment in each simulation.
Resumo:
Shallow upland drains, grips, have been hypothesized as responsible for increased downstream flow magnitudes. Observations provide counterfactual evidence, often relating to the difficulty of inferring conclusions from statistical correlation and paired catchment comparisons, and the complexity of designing field experiments to test grip impacts at the catchment scale. Drainage should provide drier antecedent moisture conditions, providing more storage at the start of an event; however, grips have higher flow velocities than overland flow, thus potentially delivering flow more rapidly to the drainage network. We develop and apply a model for assessing the impacts of grips on flow hydrographs. The model was calibrated on the gripped case, and then the gripped case was compared with the intact case by removing all grips. This comparison showed that even given parameter uncertainty, the intact case had significantly higher flood peaks and lower baseflows, mirroring field observations of the hydrological response of intact peat. The simulations suggest that this is because delivery effects may not translate into catchment-scale impacts for three reasons. First, in our case, the proportions of flow path lengths that were hillslope were not changed significantly by gripping. Second, the structure of the grip network as compared with the structure of the drainage basin mitigated against grip-related increases in the concentration of runoff in the drainage network, although it did marginally reduce the mean timing of that concentration at the catchment outlet. Third, the effect of the latter upon downstream flow magnitudes can only be assessed by reference to the peak timing of other tributary basins, emphasizing that drain effects are both relative and scale dependent. However, given the importance of hillslope flow paths, we show that if upland drainage causes significant changes in surface roughness on hillslopes, then critical and important feedbacks may impact upon the speed of hydrological response. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Hydrograph convolution is a product of tributary inputs from across the watershed. The time-space distribution of precipitation, the biophysical processes that control the conversion of precipitation to runoff and channel flow conveyance processes, are heterogeneous and different areas respond to rainfall in different ways. We take a subwatershed approach to this and account for tributary flow magnitude, relative timing, and sequencing. We hypothesize that as the scale of the watershed increases so we may start to see systematic differences in subwatershed hydrological response. We test this hypothesis for a large flood (T >100 years) in a large watershed in northern England. We undertake a sensitivity analysis of the effects of changing subwatershed hydrological response using a hydraulic model. Delaying upstream tributary peak flow timing to make them asynchronous from downstream subwatersheds reduced flood magnitude. However, significant hydrograph adjustment in any one subwatershed was needed for meaningful reductions in stage downstream, although smaller adjustments in multiple tributaries resulted in comparable impacts. For larger hydrograph adjustments, the effect of changing the timing of two tributaries together was lower than the effect of changing each one separately. For smaller adjustments synergy between two subwatersheds meant the effect of changing them together could be greater than the sum of the parts. Thus, this work shows that while the effects of modifying biophysical catchment properties diminishes with scale due to dilution effects, their impact on relative timing of tributaries may, if applied in the right locations, be an important element of flood management.
Resumo:
A surface forcing response framework is developed that enables an understanding of time-dependent climate change from a surface energy perspective. The framework allows the separation of fast responses that are unassociated with global-mean surface air temperature change (ΔT), which is included in the forcing, and slow feedbacks that scale with ΔT. The framework is illustrated primarily using 2 × CO2 climate model experiments and is robust across the models. For CO2 increases, the positive downward radiative component of forcing is smaller at the surface than at the tropopause, and so a rapid reduction in the upward surface latent heat (LH) flux is induced to conserve the tropospheric heat budget; this reduces the precipitation rate. Analysis of the time-dependent surface energy balance over sea and land separately reveals that land areas rapidly regain energy balance, and significant land surface warming occurs before global sea temperatures respond. The 2 × CO2 results are compared to a solar increase experiment and show that some fast responses are forcing dependent. In particular, a significant forcing from the fast hydrological response found in the CO2 experiments is much smaller in the solar experiment. The different fast response explains why previous equilibrium studies found differences in the hydrological sensitivity between these two forcings. On longer time scales, as ΔT increases, the net surface longwave and LH fluxes provide positive and negative surface feedbacks, respectively, while the net surface shortwave and sensible heat fluxes change little. It is found that in contrast to their fast responses, the longer-term response of both surface energy fluxes and the global hydrological cycle are similar for the different forcing agents.
Resumo:
A strong climatic warming is currently observed in the Caucasus mountains, which has profound impact on runoff generation in the glaciated Glavny (Main) Range and on water availability in the whole region. To assess future changes in the hydrological cycle, the output of a general circulation model was downscaled statistically. For the 21st century, a further warming by 4–7 °C and a slight precipitation increase is predicted. Measured and simulated meteorological variables were used as input into a runoff model to transfer climate signals into a hydrological response under both present and future climate forcings. Runoff scenarios for the mid and the end of the 21st century were generated for different steps of deglaciation. The results show a satisfactory model performance for periods with observed runoff. Future water availability strongly depends on the velocity of glacier retreat. In a first phase, a surplus of water will increase flood risk in hot years and after continuing glacier reduction, annual runoff will again approximate current values. However, the seasonal distribution of streamflow will change towards runoff increase in spring and lower flows in summer.
Resumo:
This paper compares the effects of two indicative climate mitigation policies on river flows in six catchments in the UK with two scenarios representing un-mitigated emissions. It considers the consequences of uncertainty in both the pattern of catchment climate change as represented by different climate models and hydrological model parameterisation on the effects of mitigation policy. Mitigation policy has little effect on estimated flow magnitudes in 2030. By 2050 a mitigation policy which achieves a 2oC temperature rise target reduces impacts on low flows by 20-25% compared to a business-as-usual emissions scenario which increases temperatures by 4oC by the end of the 21st century, but this is small compared to the range in impacts between different climate model scenarios. However, the analysis also demonstrates that an early peak in emissions would reduce impacts by 40-60% by 2080 (compared with the 4oC pathway), easing the adaptation challenge over the long term, and can delay by several decades the impacts that would be experienced from around 2050 in the absence of policy. The estimated proportion of impacts avoided varies between climate model patterns and, to a lesser extent, hydrological model parameterisations, due to variations in the projected shape of the relationship between climate forcing and hydrological response.
Resumo:
The traditional forcing-feedback framework has provided an indispensable basis for discussing global climate changes. However, as analysis of model behavior has become more detailed, shortcomings and ambiguities in the framework have become more evident and physical effects unaccounted for by the traditional framework have become interesting. In particular, the new concept of adjustments, which are responses to forcings that are not mediated by the global mean temperature, has emerged. This concept, related to the older ones of climate efficacy and stratospheric adjustment, is a more physical way of capturing unique responses to specific forcings. We present a pedagogical review of the adjustment concept, why it is important, and how it can be used. The concept is particularly useful for aerosols, where it helps to organize what has become a complex array of forcing mechanisms. It also helps clarify issues around cloud and hydrological response, transient vs. equilibrium climate change, and geoengineering.
Resumo:
The analysis of morphometric characteristics is used to understand the relationship between soil and surface as a result of erosive processes on different structures and lithologies. The objective of this study was to study the morphometric characteristics of Fazenda Gloria watershed from 1983 to 2000, a fourth-order watershed in Taquaritinga Municipality, São Paulo State. The study was based on photointerpretation techniques. Drainage net and the respective watersheds were selected and the morphometric variables were determined. The watersheds consisted of 7 second-order watersheds and 2 third-order watersheds. The morphometric characteristics showed a reduction in the number of segments of first-order rivers and in the length of the drainage net during the study period. These findings could be related to several influences on land development considering occupation and use of land. A different hydrological behavior could also be observed. The analysis of Fazenda Glória Watershed showed that the length of the segment of fourth order river remained constant during the study period.
Resumo:
The analysis of the physical medium in hydrographic basins requires knowledge of the processes involved and characteristics of variables at different geographic scales. Considering the principle that the micro-basins can be categorized, they are then considered territorial units of ideal work for the analysis of hydrologic conditions. The objective of this work was to compare water resources of four hydrographic basins' with different land use and occupation. Five sampling points along the drainage network of hydrographic basins of first order of magnitude and a sampling point in the river mouth of M1 and M4 micro-basins were established. The water collections occurred at monthly intervals from August, 2006 to August, 2007. Temperature (°C), turbidity (NTU), odor, pH, electric conductivity (μS cm-1), dissolved oxygen (mg/L), total dissolved solids (ppm) and total phosphorous (mg/L) were the variables evaluated in the study. The highest variability of the parameters was found in hydrographic basins M2 and M3. The characterization of the hydrologic conditions of the hydrographic micro-basins indicated that agricultural activities, including cultural practices of anthropic activities affect water resources.
Resumo:
In areas where human activities, as agriculture, are developed land use contributes to physical, chemical and biological characteristics of water. This study aimed to identify physical and chemical variations of the water monitoring network in 4 first magnitude watersheds with different land use/occupation in the hydrographic basin of the Glori Farm Creek in the city of Taquaritinga, State of Sao Paulo, from February to July, 2005. The methodology consisted of weekly sample water collections to naalyze turbidity, temperature, dissolved oxygen, pH and electric conductivity. The characterization of the hydrological conditions of the watersheds showed that agricultural activities, including the productive system of the sugarcane cultivation, have affected the quality of water resources.