967 resultados para hydraulic control equipment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presents a unified and systematic assessment of ten position control strategies for a hydraulic servo system with single-ended cylinder driven by a proportional directional control valve. We aim at identifying those methods that achieve better tracking, have a low sensitivity to system uncertainties, and offer a good balance between development effort and end results. A formal approach for solving this problem relies on several practical metrics, which is introduced herein. Their choice is important, as the comparison results between controllers can vary significantly, depending on the selected criterion. Apart from the quantitative assessment, we also raise aspects which are difficult to quantify, but which must stay in attention when considering the position control problem for this class of hydraulic servo systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Instruments."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The compressed gas industry and government agencies worldwide utilize "adiabatic compression" testing for qualifying high-pressure valves, regulators, and other related flow control equipment for gaseous oxygen service. This test methodology is known by various terms including adiabatic compression testing, gaseous fluid impact testing, pneumatic impact testing, and BAM testing as the most common terms. The test methodology will be described in greater detail throughout this document but in summary it consists of pressurizing a test article (valve, regulator, etc.) with gaseous oxygen within 15 to 20 milliseconds (ms). Because the driven gas1 and the driving gas2 are rapidly compressed to the final test pressure at the inlet of the test article, they are rapidly heated by the sudden increase in pressure to sufficient temperatures (thermal energies) to sometimes result in ignition of the nonmetallic materials (seals and seats) used within the test article. In general, the more rapid the compression process the more "adiabatic" the pressure surge is presumed to be and the more like an isentropic process the pressure surge has been argued to simulate. Generally speaking, adiabatic compression is widely considered the most efficient ignition mechanism for directly kindling a nonmetallic material in gaseous oxygen and has been implicated in many fire investigations. Because of the ease of ignition of many nonmetallic materials by this heating mechanism, many industry standards prescribe this testing. However, the results between various laboratories conducting the testing have not always been consistent. Research into the test method indicated that the thermal profile achieved (i.e., temperature/time history of the gas) during adiabatic compression testing as required by the prevailing industry standards has not been fully modeled or empirically verified, although attempts have been made. This research evaluated the following questions: 1) Can the rapid compression process required by the industry standards be thermodynamically and fluid dynamically modeled so that predictions of the thermal profiles be made, 2) Can the thermal profiles produced by the rapid compression process be measured in order to validate the thermodynamic and fluid dynamic models; and, estimate the severity of the test, and, 3) Can controlling parameters be recommended so that new guidelines may be established for the industry standards to resolve inconsistencies between various test laboratories conducting tests according to the present standards?

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica com especialização em Energia, Climatização e Refrigeração

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to develop a laboratory method for time response evaluation on electronically controlled spray equipment using Programmable Logic Controllers (PLCs). For that purpose, a PLC controlled digital drive inverter was set up to drive an asynchronous electric motor linked to a centrifugal pump on a experimental sprayer equipped with electronic flow control. The PLC was operated via RS232 serial communication from a PC computer. A user program was written to control de motor by adjusting the following system variables, all related to the motor speed: time stopped; ramp up and ramp down times, time running at a given constant speed and ramp down time to stop the motor. This set up was used in conjunction with a data acquisition system to perform laboratory tests with an electronically controlled sprayer. Time response for pressure stabilization was measured while changing the pump speed by +/-20%. The results showed that for a 0.2 s ramp time increasing the motor speed, as an example, an AgLogix Flow Control system (Midwest Technologies Inc.) took 22 s in average to readjust the pressure. When decreasing the motor speed, this time response was down to 8 s. General results also showed that this kind of methodology could make easier the definition of standards for tests on electronically controlled application equipment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Contract no. 68-01-2821.