813 resultados para hybrid Cloud
Resumo:
The evolution and maturation of Cloud Computing created an opportunity for the emergence of new Cloud applications. High-performance Computing, a complex problem solving class, arises as a new business consumer by taking advantage of the Cloud premises and leaving the expensive datacenter management and difficult grid development. Standing on an advanced maturing phase, today’s Cloud discarded many of its drawbacks, becoming more and more efficient and widespread. Performance enhancements, prices drops due to massification and customizable services on demand triggered an emphasized attention from other markets. HPC, regardless of being a very well established field, traditionally has a narrow frontier concerning its deployment and runs on dedicated datacenters or large grid computing. The problem with common placement is mainly the initial cost and the inability to fully use resources which not all research labs can afford. The main objective of this work was to investigate new technical solutions to allow the deployment of HPC applications on the Cloud, with particular emphasis on the private on-premise resources – the lower end of the chain which reduces costs. The work includes many experiments and analysis to identify obstacles and technology limitations. The feasibility of the objective was tested with new modeling, architecture and several applications migration. The final application integrates a simplified incorporation of both public and private Cloud resources, as well as HPC applications scheduling, deployment and management. It uses a well-defined user role strategy, based on federated authentication and a seamless procedure to daily usage with balanced low cost and performance.
Resumo:
This paper tackles the optimization of applications in multi-provider hybrid cloud scenarios from an economic point of view. In these scenarios the great majority of solutions offer the automatic allocation of resources on different cloud providers based on their current prices. However our approach is intended to introduce a novel solution by making maximum use of divide and rule. This paper describes a methodology to create cost aware cloud applications that can be broken down into the three most important components in cloud infrastructures: computation, network and storage. A real videoconference system has been modified in order to evaluate this idea with both theoretical and empirical experiments. This system has become a widely used tool in several national and European projects for e-learning and collaboration purposes.
Resumo:
The progresses of the Internet and telecommunications have been changing the concepts of Information Technology IT, especially with regard to outsourcing services, where organizations seek cost-cutting and a better focus on the business. Along with the development of that outsourcing, a new model named Cloud Computing (CC) evolved. It proposes to migrate to the Internet both data processing and information storing. Among the key points of Cloud Computing are included cost-cutting, benefits, risks and the IT paradigms changes. Nonetheless, the adoption of that model brings forth some difficulties to decision-making, by IT managers, mainly with regard to which solutions may go to the cloud, and which service providers are more appropriate to the Organization s reality. The research has as its overall aim to apply the AHP Method (Analytic Hierarchic Process) to decision-making in Cloud Computing. There to, the utilized methodology was the exploratory kind and a study of case applied to a nationwide organization (Federation of Industries of RN). The data collection was performed through two structured questionnaires answered electronically by IT technicians, and the company s Board of Directors. The analysis of the data was carried out in a qualitative and comparative way, and we utilized the software to AHP method called Web-Hipre. The results we obtained found the importance of applying the AHP method in decision-making towards the adoption of Cloud Computing, mainly because on the occasion the research was carried out the studied company already showed interest and necessity in adopting CC, considering the internal problems with infrastructure and availability of information that the company faces nowadays. The organization sought to adopt CC, however, it had doubt regarding the cloud model and which service provider would better meet their real necessities. The application of the AHP, then, worked as a guiding tool to the choice of the best alternative, which points out the Hybrid Cloud as the ideal choice to start off in Cloud Computing. Considering the following aspects: the layer of Infrastructure as a Service IaaS (Processing and Storage) must stay partly on the Public Cloud and partly in the Private Cloud; the layer of Platform as a Service PaaS (Software Developing and Testing) had preference for the Private Cloud, and the layer of Software as a Service - SaaS (Emails/Applications) divided into emails to the Public Cloud and applications to the Private Cloud. The research also identified the important factors to hiring a Cloud Computing provider
Resumo:
The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Cloud nodes that can interoperate together. We have chosen to represent the P2P nodes as Planet Lab machines over the world and the cloud nodes using a Cloud provider's network. First we present an experimental validation of the Cloud infrastructure's ability to distribute streaming sessions with respect to some key streaming QoS parameters: jitter, throughput and packet losses. Next we show the results obtained from different test scenarios, when a hybrid distribution network is used. The scenarios measure the improvement of the multimedia QoS parameters, when nodes in the streaming distribution network (located in different continents) are gradually moved into the Cloud provider infrastructure. The overall conclusion is that the QoS of a streaming service can be efficiently improved, unlike in traditional P2P systems and CDN, by deploying a hybrid streaming architecture. This enhancement can be obtained by strategic placing of certain distribution network nodes into the Cloud provider infrastructure, taking advantage of the reduced packet loss and low latency that exists among its datacenters.
Resumo:
This work is related to the so-called non-conventional finite element formulations. Essentially, a methodology for the enrichment of the initial approximation which is typical of the meshless methods and based on the clouds concept is introduced in the hybrid-Trefftz formulation for plane elasticity. The formulation presented allows for the approximation and direct enrichment of two independent fields: stresses in the domains and displacements on the boundaries of the elements. Defined by a set of elements and interior boundaries sharing a common node, the cloud notion is employed to select the enrichment support for the approximation fields. The numerical analysis performed reveals an excellent performance of the resulting formulation, characterized by the good approximation ability and a reduced computational effort. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Wireless Body Area Networks (WBANs) have emerged as a promising technology for medical and non-medical applications. WBANs consist of a number of miniaturized, portable, and autonomous sensor nodes that are used for long-term health monitoring of patients. These sensor nodes continuously collect information of patients, which are used for ubiquitous health monitoring. In addition, WBANs may be used for managing catastrophic events and increasing the effectiveness and performance of rescue forces. The huge amount of data collected by WBAN nodes demands scalable, on-demand, powerful, and secure storage and processing infrastructure. Cloud computing is expected to play a significant role in achieving the aforementioned objectives. The cloud computing environment links different devices ranging from miniaturized sensor nodes to high-performance supercomputers for delivering people-centric and context-centric services to the individuals and industries. The possible integration of WBANs with cloud computing (WBAN-cloud) will introduce viable and hybrid platform that must be able to process the huge amount of data collected from multiple WBANs. This WBAN-cloud will enable users (including physicians and nurses) to globally access the processing and storage infrastructure at competitive costs. Because WBANs forward useful and life-critical information to the cloud – which may operate in distributed and hostile environments, novel security mechanisms are required to prevent malicious interactions to the storage infrastructure. Both the cloud providers and the users must take strong security measures to protect the storage infrastructure.
Resumo:
The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery “wastes”: lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization ( Peptidoglycan (a bacterial cell wall material) was copolymerized with poly-(3-hydroxybutyrate), a common polyhydroxyalkanoate produced by bacteria with the objective of determining if a useful material could be obtained with a less rigorous work-up on harvesting polyhydroxyalkanoates. The copolyesteramide product having 25 wt.% peptidoglycan from a highly purified peptidoglycan increased thermal stability by 100-200 °C compared to the poly-(3-hydroxybutyrate) control, while a less pure peptidoglycan, harvested from B. megaterium (ATCC 11561), gave a 25-50 °C increase in thermal stability. Both copolymers absorbed more moisture than pure poly-(3-hydroxybutyrate). The results suggest that a less rigorously harvested and purified polyhydroxyalkanoate might be useful for some applications.
Resumo:
This paper proposes a new methodology focused on implementing cost effective architectures on Cloud Computing systems. With this methodology the paper presents some disadvantages of systems that are based on single Cloud architectures and gives some advices for taking into account in the development of hybrid systems. The work also includes a validation of these ideas implemented in a complete videoconference service developed with our research group. This service allows a great number of users per conference, multiple simultaneous conferences, different client software (requiring transcodification of audio and video flows) and provides a service like automatic recording. Furthermore it offers different kinds of connectivity including SIP clients and a client based on Web 2.0. The ideas proposed in this article are intended to be a useful resource for any researcher or developer who wants to implement cost effective systems on several Clouds
Resumo:
Cloud computing is one the most relevant computing paradigms available nowadays. Its adoption has increased during last years due to the large investment and research from business enterprises and academia institutions. Among all the services cloud providers usually offer, Infrastructure as a Service has reached its momentum for solving HPC problems in a more dynamic way without the need of expensive investments. The integration of a large number of providers is a major goal as it enables the improvement of the quality of the selected resources in terms of pricing, speed, redundancy, etc. In this paper, we propose a system architecture, based on semantic solutions, to build an interoperable scheduler for federated clouds that works with several IaaS (Infrastructure as a Service) providers in a uniform way. Based on this architecture we implement a proof-of-concept prototype and test it with two different cloud solutions to provide some experimental results about the viability of our approach.
Resumo:
Multi-user videoconferencing systems offer communication between more than two users, who are able to interact through their webcams, microphones and other components. The use of these systems has been increased recently due to, on the one hand, improvements in Internet access, networks of companies, universities and houses, whose available bandwidth has been increased whilst the delay in sending and receiving packets has decreased. On the other hand, the advent of Rich Internet Applications (RIA) means that a large part of web application logic and control has started to be implemented on the web browsers. This has allowed developers to create web applications with a level of complexity comparable to traditional desktop applications, running on top of the Operating Systems. More recently the use of Cloud Computing systems has improved application scalability and involves a reduction in the price of backend systems. This offers the possibility of implementing web services on the Internet with no need to spend a lot of money when deploying infrastructures and resources, both hardware and software. Nevertheless there are not many initiatives that aim to implement videoconferencing systems taking advantage of Cloud systems. This dissertation proposes a set of techniques, interfaces and algorithms for the implementation of videoconferencing systems in public and private Cloud Computing infrastructures. The mechanisms proposed here are based on the implementation of a basic videoconferencing system that runs on the web browser without any previous installation requirements. To this end, the development of this thesis starts from a RIA application with current technologies that allow users to access their webcams and microphones from the browser, and to send captured data through their Internet connections. Furthermore interfaces have been implemented to allow end users to participate in videoconferencing rooms that are managed in different Cloud provider servers. To do so this dissertation starts from the results obtained from the previous techniques and backend resources were implemented in the Cloud. A traditional videoconferencing service which was implemented in the department was modified to meet typical Cloud Computing infrastructure requirements. This allowed us to validate whether Cloud Computing public infrastructures are suitable for the traffic generated by this kind of system. This analysis focused on the network level and processing capacity and stability of the Cloud Computing systems. In order to improve this validation several other general considerations were taken in order to cover more cases, such as multimedia data processing in the Cloud, as research activity has increased in this area in recent years. The last stage of this dissertation is the design of a new methodology to implement these kinds of applications in hybrid clouds reducing the cost of videoconferencing systems. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this study, resulting in useful information from the different stages of the implementation of videoconferencing systems in Cloud Computing systems. RESUMEN Los sistemas de videoconferencia multiusuario permiten la comunicación entre más de dos usuarios que pueden interactuar a través de cámaras de video, micrófonos y otros elementos. En los últimos años el uso de estos sistemas se ha visto incrementado gracias, por un lado, a la mejora de las redes de acceso en las conexiones a Internet en empresas, universidades y viviendas, que han visto un aumento del ancho de banda disponible en dichas conexiones y una disminución en el retardo experimentado por los datos enviados y recibidos. Por otro lado también ayudó la aparación de las Aplicaciones Ricas de Internet (RIA) con las que gran parte de la lógica y del control de las aplicaciones web comenzó a ejecutarse en los mismos navegadores. Esto permitió a los desarrolladores la creación de aplicaciones web cuya complejidad podía compararse con la de las tradicionales aplicaciones de escritorio, ejecutadas directamente por los sistemas operativos. Más recientemente el uso de sistemas de Cloud Computing ha mejorado la escalabilidad y el abaratamiento de los costes para sistemas de backend, ofreciendo la posibilidad de implementar servicios Web en Internet sin la necesidad de grandes desembolsos iniciales en las áreas de infraestructuras y recursos tanto hardware como software. Sin embargo no existen aún muchas iniciativas con el objetivo de realizar sistemas de videoconferencia que aprovechen las ventajas del Cloud. Esta tesis doctoral propone un conjunto de técnicas, interfaces y algoritmos para la implentación de sistemas de videoconferencia en infraestructuras tanto públicas como privadas de Cloud Computing. Las técnicas propuestas en la tesis se basan en la realización de un servicio básico de videoconferencia que se ejecuta directamente en el navegador sin la necesidad de instalar ningún tipo de aplicación de escritorio. Para ello el desarrollo de esta tesis parte de una aplicación RIA con tecnologías que hoy en día permiten acceder a la cámara y al micrófono directamente desde el navegador, y enviar los datos que capturan a través de la conexión de Internet. Además se han implementado interfaces que permiten a usuarios finales la participación en salas de videoconferencia que se ejecutan en servidores de proveedores de Cloud. Para ello se partió de los resultados obtenidos en las técnicas anteriores de ejecución de aplicaciones en el navegador y se implementaron los recursos de backend en la nube. Además se modificó un servicio ya existente implementado en el departamento para adaptarlo a los requisitos típicos de las infraestructuras de Cloud Computing. Alcanzado este punto se procedió a analizar si las infraestructuras propias de los proveedores públicos de Cloud Computing podrían soportar el tráfico generado por los sistemas que se habían adaptado. Este análisis se centró tanto a nivel de red como a nivel de capacidad de procesamiento y estabilidad de los sistemas. Para los pasos de análisis y validación de los sistemas Cloud se tomaron consideraciones más generales para abarcar casos como el procesamiento de datos multimedia en la nube, campo en el que comienza a haber bastante investigación en los últimos años. Como último paso se ideó una metodología de implementación de este tipo de aplicaciones para que fuera posible abaratar los costes de los sistemas de videoconferencia haciendo uso de clouds híbridos. Finalmente en la tesis se abre una discusión sobre las conclusiones obtenidas a lo largo de este amplio estudio, obteniendo resultados útiles en las distintas etapas de implementación de los sistemas de videoconferencia en la nube.
Resumo:
In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion
Resumo:
This thesis presents the formal definition of a novel Mobile Cloud Computing (MCC) extension of the Networked Autonomic Machine (NAM) framework, a general-purpose conceptual tool which describes large-scale distributed autonomic systems. The introduction of autonomic policies in the MCC paradigm has proved to be an effective technique to increase the robustness and flexibility of MCC systems. In particular, autonomic policies based on continuous resource and connectivity monitoring help automate context-aware decisions for computation offloading. We have also provided NAM with a formalization in terms of a transformational operational semantics in order to fill the gap between its existing Java implementation NAM4J and its conceptual definition. Moreover, we have extended NAM4J by adding several components with the purpose of managing large scale autonomic distributed environments. In particular, the middleware allows for the implementation of peer-to-peer (P2P) networks of NAM nodes. Moreover, NAM mobility actions have been implemented to enable the migration of code, execution state and data. Within NAM4J, we have designed and developed a component, denoted as context bus, which is particularly useful in collaborative applications in that, if replicated on each peer, it instantiates a virtual shared channel allowing nodes to notify and get notified about context events. Regarding the autonomic policies management, we have provided NAM4J with a rule engine, whose purpose is to allow a system to autonomously determine when offloading is convenient. We have also provided NAM4J with trust and reputation management mechanisms to make the middleware suitable for applications in which such aspects are of great interest. To this purpose, we have designed and implemented a distributed framework, denoted as DARTSense, where no central server is required, as reputation values are stored and updated by participants in a subjective fashion. We have also investigated the literature regarding MCC systems. The analysis pointed out that all MCC models focus on mobile devices, and consider the Cloud as a system with unlimited resources. To contribute in filling this gap, we defined a modeling and simulation framework for the design and analysis of MCC systems, encompassing both their sides. We have also implemented a modular and reusable simulator of the model. We have applied the NAM principles to two different application scenarios. First, we have defined a hybrid P2P/cloud approach where components and protocols are autonomically configured according to specific target goals, such as cost-effectiveness, reliability and availability. Merging P2P and cloud paradigms brings together the advantages of both: high availability, provided by the Cloud presence, and low cost, by exploiting inexpensive peers resources. As an example, we have shown how the proposed approach can be used to design NAM-based collaborative storage systems based on an autonomic policy to decide how to distribute data chunks among peers and Cloud, according to cost minimization and data availability goals. As a second application, we have defined an autonomic architecture for decentralized urban participatory sensing (UPS) which bridges sensor networks and mobile systems to improve effectiveness and efficiency. The developed application allows users to retrieve and publish different types of sensed information by using the features provided by NAM4J's context bus. Trust and reputation is managed through the application of DARTSense mechanisms. Also, the application includes an autonomic policy that detects areas characterized by few contributors, and tries to recruit new providers by migrating code necessary to sensing, through NAM mobility actions.
Resumo:
Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.
Resumo:
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.