1000 resultados para hyaline layer
Resumo:
There is no consensus on whether the first mineralized layer, the hyaline layer, that is juxtaposed to root dentine is a variety of dentine or cementum or even a tissue of epithelial origin. Some suggest that there is no intermediate tissue between the acellular extrinsic fibre cementum (AEFC) and the root dentine. Here, to study hyaline layer formation and mineralization we examined by transmission electron microscopy the early stages of root development in upper molars from 10 to 13 day old Wistar rats. In addition to conventionally processed material, undemineralized and unstained sections were examined, which showed the deposition of fine mineral crystals in contact with the mineralized surface of root dentine. Early mineralization of the hyaline layer occurred in the region of the inner basement membrane, which persisted between the inner cellular layer of Hertwig's epithelial root sheath and the outer mineralized root dentine. When the root sheath began its fragment, collagen fibrils From the developing periodontal ligament began to insert into the mineralising hyaline layer, which was 0.5-0.8 mum wide. As the fragmentation of the root sheath HERS increased, more collagen fibrils appeared intermingled with the mineralising hyaline layer. In more advanced stages, when the hyaline layer had become fully mineralized and the formation of the AEFC began, the hyaline layer could no longer be identified. Thus, the hyaline layer is clearly discernible at early stages of periodontal development. Subsequently, it is masked by intermingling of cementum and dentine and therefore it is not possible to detect it in the formed roots of rat molars. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Myxidium volitans sp. nov. (Myxozoa: Myxidiidae) parasitizing the hypertrophied green-brownish gallbladder of the teleost Dactylopterus volitans, collected in the Atlantic coast near Niterói, Brazil was described based on ultrastructural studies. The spores were fusiform, sometimes slightly crescent-shaped on average 21.7 ± 0.3 µm (mean ± standard deviation) (n = 50) long and 5.6 ± 0.4 µm (n = 30) wide. The spore wall was thin and smooth, comprising two equally-sized valves joined by a hardly visible sutural ridge. Spores containing two pyriform polar capsules (PC) (5.0 ± 0.4 × 2.3 ± 0.3 µm) (n = 30) are situated in each extremity of the spore. The PC wall was composed of hyaline layer (0.20-0.29 µm thick) and by a thin external granular layer. Each PC contains a polar filament (PF) with irregular arrangements that was projected from its apical region to the bases of PC and coiled laterally from bases to the tip of PC. Some regular striations and S-like structures in the periphery of the PFs with four-five irregular sections were observed. Based on the spore morphology, ultrastructural differences and the specificity of the host we describe this parasite as a new myxosporidian, named M. volitans sp. nov.
Resumo:
Fertilization depends on distribution and aggregation patterns of sea urchins which influence gamete contact time and may potentially enhance their vulnerability to ocean acidification. In this study, we conducted fertilization experiments to assess the effects of selected pH scenarios on fertilization success of Strongylocentrotus droebachiensis, from Spitsbergen, Arctic. Acidification was achieved by aerating seawater with different CO2 partial pressures to represent pre-industrial and present conditions (measured ~180-425 µatm) and future acidification scenarios (~550-800, ~1,300, ~2,000 µatm). Fertilization success was defined as the proportion of successful/unsuccessful fertilizations per treatment; eggs were classified according to features of their fertilization envelope (FE), hyaline layer (HL) and achievement of cellular division. The diagnostic findings of specific pathological aberrations were described in detail. We additionally measured intracellular pH changes in unfertilized eggs exposed for 1 h to selected acidification treatments using BCECF/AM. We conclude that (a) acidified conditions increase the proportion of eggs that failed fertilization, (b) acidification may increase the risk of polyspermy due to failures in the FE formation supported by the occasional observation of multiple sperms in the perivitelline space and (c) irregular formation of the embryo may arise due to impaired formation of the HL. The decrease in fertilization success could be also related to the observed changes in intracellular pH at pCO2 ~ 1,000 µatm or higher.
Resumo:
In conventional fabrication of ceramic separation membranes, the particulate sols are applied onto porous supports. Major structural deficiencies under this approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We have overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using lager titanate nanofibers and smaller boehmite nanofibers. This yields a radical change in membrane texture. The resulting membranes effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. This reveals a new direction in membrane fabrication.
Resumo:
Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.
Resumo:
This document describes algorithms based on Elliptic Cryptography (ECC) for use within the Secure Shell (SSH) transport protocol. In particular, it specifies Elliptic Curve Diffie-Hellman (ECDH) key agreement, Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key agreement, and Elliptic Curve Digital Signature Algorithm (ECDSA) for use in the SSH Transport Layer protocol.
Resumo:
Many surveillance applications (object tracking, abandoned object detection) rely on detecting changes in a scene. Foreground segmentation is an effective way to extract the foreground from the scene, but these techniques cannot discriminate between objects that have temporarily stopped and those that are moving. We propose a series of modifications to an existing foreground segmentation system\cite{Butler2003} so that the foreground is further segmented into two or more layers. This yields an active layer of objects currently in motion and a passive layer of objects that have temporarily ceased motion which can itself be decomposed into multiple static layers. We also propose a variable threshold to cope with variable illumination, a feedback mechanism that allows an external process (i.e. surveillance system) to alter the motion detectors state, and a lighting compensation process and a shadow detector to reduce errors caused by lighting inconsistencies. The technique is demonstrated using outdoor surveillance footage, and is shown to be able to effectively deal with real world lighting conditions and overlapping objects.
Resumo:
Abandoned object detection (AOD) systems are required to run in high traffic situations, with high levels of occlusion. Systems rely on background segmentation techniques to locate abandoned objects, by detecting areas of motion that have stopped. This is often achieved by using a medium term motion detection routine to detect long term changes in the background. When AOD systems are integrated into person tracking system, this often results in two separate motion detectors being used to handle the different requirements. We propose a motion detection system that is capable of detecting medium term motion as well as regular motion. Multiple layers of medium term (static) motion can be detected and segmented. We demonstrate the performance of this motion detection system and as part of an abandoned object detection system.
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
In this paper, the authors propose a new structure for the decoupling of circulant symmetric arrays of more than four elements. In this case, network element values are again obtained through a process of repeated eigenmode decoupling, here by solving sets of nonlinear equations. However, the resulting circuit is much simpler and can be implemented on a single layer. The corresponding circuit topology for the 6-element array is displayed in figure diagrams. The procedure will be illustrated by considering different examples.