965 resultados para human pathogenic bacteria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lectin isolated from the red alga Solieria filiformis was evaluated for its effect on the growth of 8 gram-negative and 3 gram-positive bacteria cultivated in liquid medium (three independent experiments/bacterium). The lectin (500 µg/mL) stimulated the growth of the gram-positive species Bacillus cereus and inhibited the growth of the gram-negative species Serratia marcescens, Salmonella typhi, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus sp, and Pseudomonas aeruginosa at 1000 µg/mL but the lectin (10-1000 µg/mL) had no effect on the growth of the gram-positive bacteria Staphylococcus aureus and B. subtilis, or on the gram-negative bacteria Escherichia coli and Salmonella typhimurium. The purified lectin significantly reduced the cell density of gram-negative bacteria, although no changes in growth phases (log, exponential and of decline) were observed. It is possible that the interaction of S. filiformis lectin with the cell surface receptors of gram-negative bacteria promotes alterations in the flow of nutrients, which would explain the bacteriostatic effect. Growth stimulation of the gram-positive bacterium B. cereus was more marked in the presence of the lectin at a concentration of 1000 µg/mL. The stimulation of the growth of B. cereus was not observed when the lectin was previously incubated with mannan (125 µg/mL), its hapten. Thus, we suggest the involvement of the binding site of the lectin in this effect. The present study reports the first data on the inhibition and stimulation of pathogenic bacterial cells by marine alga lectins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nasopharyngeal bacteria can asymptomatically colonize the nasopharynx of infants and young children but are also associated with the development of respiratory infections and diseases. Such nasopharyngeal bacteria include Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae and Staphylococcus aureus. The host defense against invading pathogens is largely relies germline-encoded pattern recognition receptors (PRR), which are expressed on the cells of innate immunity, and different cytokines. These include toll-like receptors (TLR), mannose-binding lectin (MBL) and different cytokines such as IL-17A. Single nucleotide polymorphisms (SNP) in these receptors and cytokines have been reported. The aim of this study was to investigate genetic polymorphisms in the genes for TLR2, 3 and 4, MBL as well as for IL-17A and their associations with nasopharyngeal pathogenic bacterial colonization during a two-year follow-up. The study revealed that polymorphisms in TLRs, MBL2 and IL17A are associated with the nasopharyngeal bacterial colonization in young children. Healthy young (2.6 months of age) children with variant types of MBL2, TLR2 R753Q or TLR4 D299G had an increased risk to be colonized by S. pneumonia, S. aureus or M. catarrhalis, respectively. Moreover, variant types of MBL2 in healthy children with might facilitate human rhinovirus (HRV)-induced S. pneumoniae colonization at 2.6 months of age. The polymorphism of TLR4 D299G was shown to be associated with M. catarrhalis colonization throughout the whole two-year follow-up (2.6, 13 and 24 months of age) and also with the bacterial load of this pathogen. Also, the polymorphism of IL17A G152A was shown to be associated with increased risk to be colonized by S. pneumoniae at 13 and 24 months of age. Furthermore, the results suggest that IL17A G152A has an effect on production of serum IL-17A already at young age. In conclusion, the results of this study indicate that polymorphisms in the key PRRs and IL17A seem to play an important role to colonization of S. pneumoniae, M. catarrhalis, and S. aureus in healthy young Finnish children. The nasopharyngeal colonization by these pathogenic bacteria may further promote the development of respiratory infections and may be related to development of asthma and allergy in the later life of children. These findings offer a possible explanation why some children have more respiratory infections than other children and provide a rational basis for future studies in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides (HuBacteroides)) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens, rotavirus and all pathogens combined. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-to-cell signals of the Diffusible Signal Factor (DSF) family are cis-2-unsaturated fatty acids of differing chain length and branching pattern. DSF signalling has been described in diverse bacteria to include plant and human pathogens where it acts to regulate functions such as biofilm formation, antibiotic tolerance and the production of virulence factors. DSF family signals can also participate in interspecies signalling with other bacteria and interkingdom signaling such as with the yeast Candida albicans. Interference with DSF signalling may afford new opportunities for the control of bacterial disease. Such strategies will depend in part on detailed knowledge of the molecular mechanisms underlying the processes of signal synthesis, perception and turnover. Here, I review both recent progress in understanding DSF signalling at the molecular level and prospects for translating this knowledge into approaches for disease control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IntroductionInsects have been described as mechanical vectors of nosocomial infections.MethodsNon-biting flying insects were collected inside a pediatric ward and neonatal-intensive care unit (ICU) of a Brazilian tertiary hospital.ResultsMost (86.4%) of them were found to carry one or more species of bacteria on their external surfaces. The bacteria isolated were Gram-positive bacilli (68.2%) or cocci (40.9%), and Gram-negative bacilli (18.2%).ConclusionsInsects collected inside a hospital were carrying pathogenic bacteria; therefore, one must consider the possibility they may act as mechanical vectors of infections, in especially for debilitated or immune-compromised patients in the hospital environments where the insects were collected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IntroductionMixed-species biofilms are involved in a wide variety of infections. We studied the synergistic interactions during dual-species biofilm formation among isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia.MethodsIsolates were cultured as single-species and all possible combinations of dual-species biofilms.ResultsThe 61 A. baumannii biofilms increased by 26-fold when cultured with S. maltophilia isolates; 62 A. baumannii biofilms increased by 20-fold when cultured with S. maltophilia isolates; and 31 P. aeruginosa biofilms increased by 102-fold when cultured with S. maltophilia 106.ConclusionsSynergy was observed between two isolates, including those that inherently lacked biofilm formation ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SummaryResearch projects presented in this thesis aimed to investigate two major aspects of the arenaviruses life cycle in the host cell: viral entry and the biosynthesis of the viral envelope glycoprotein.Old World arenaviruses (OWAV), such as Lassa virus (LASV) and lymphocytic choriomeningitis virus (LCMV), attach to the cell by binding to their receptor, alpha-dystroglycan. Virions are then internalized by a largely unknown pathway of endocytosis and delivered to the late endosome/lysosome where fusion occurs at low pH. In the major project of my thesis, we sought to identify cellular factors involved in OWAV cell entry. Our work indicates that OWAV cell entry requires microtubular transport and a functional multivesicular body (MVB) compartment. Infection indeed depends on phosphatidyl inositol 3-kinase (PI3K) activity and lysobisphosphatidic acid (LBPA), a lipid found in membranes of intraluminal vesicles (ILVs) of the MVB. We further found a requirement of factors that are part of the endosomal sorting complex required for transport (ESCRT), involved in the formation of ILVs. This suggests an ESCRT-mediated sorting of virus- receptor complex during the entry process.During viral replication, biosynthesis of viral glycoprotein takes place in the endoplasmic reticulum (ER) of the host cell. When protein load exceeds the folding capacity of the ER, the accumulation of unfolded proteins is sensed by three ER resident proteins, activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) and PKR-like ER kinase (PERK), whose signaling induces the cellular unfolded protein response (UPR). Our results indicate that acute LCMV infection transiently induces the activation of the ATF6 branch of the UPR, whereas the PERK, and IRE1 axis of UPR are neither triggered nor blocked during infection. Our data also demonstrate that activation of ATF6 pathway is required for optimal viral replication during acute infection.The formation of the mature, fusion-active form of arenaviruses glycoproteins requires proteolytic cleavage mediated by the cellular protease subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). We show that targeting the SKI-1/S1P enzymatic activity with specific inhibitors is a powerful strategy to block arenaviruses productive infection. Moreover, characterization of protease function highlights differences in processing between cellular and viral substrates, opening new possibilities in term of drug development against human pathogenic arenaviruses.RésuméLes projets de recherche présentés dans cette thèse visaient à étudier deux aspects du cycle de vie des arenavirus: l'entrée du virus dans la cellule hôte et la biosynthèse de la glycoprotéine durant la réplication virale.Les arenavirus du vieux monde (OWAV), tels que le virus de Lassa (LASV) et le virus de la chorioméningite lymphocytaire (LCMV) s'attachent à la cellule hôte en se liant à leur récepteur, l'alpha-dystroglycane. Les virions sont ensuite intemalisés par une voie d'endocytose inconnue et livrés à l'endosome tardif/lysosome, où le pH acide permet la fusion entre l'enveloppe virale et la membrane du compartiment. Le projet principal de ma thèse consistait à identifier les facteurs cellulaires impliqués dans l'entrée des OWAV dans la cellule hôte. Nos résultats indiquent que l'entrée des OWAV nécessite le transport microtubulaire et la présence d'un corps multivésiculaire (MVB) fonctionnel. L'infection dépend en effet de l'activité de phosphatidyl inositol 3-kinase (PI3K) et de lysobisphosphatidic acid (LBPA), un lipide présent dans les membranes des vésicules intraluminales (ILVs) du MVB. Nous avons également trouvé l'implication de facteurs constituant l'endosomal sorting complex required for sorting (ESCRT) qui joue un rôle dans la formation des ILVs. Ces donnés suggèrent l'incorporation du complexe virus-récepteur dans des ILVs durant le processus d'entrée.Lors de la réplication virale, la biosynthèse de la glycoprotéine virale a lieu dans le réticulum endoplasmique (ER) de la cellule hôte. Lorsque la charge de protéines nouvellement synthétisées excède la capacité de pliage des protéines dans le ER, l'accumulation de protéines mal pliées est détectée par trois facteurs: activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) et PKR-like ER kinase (PERK). Leur signalisation constitue la réponse cellulaire face aux protéines mal pliées (UPR). Nos résultats montrent que l'infection aiguë avec LCMV induit transitoirement l'activation de la voie de signalisation ATF6 alors que les axes PERK et IRE1 de l'UPR ne sont ni induits ni bloqués pendant l'infection. Nos données prouvent également que l'activation de la voie ATF6 est nécessaire à une réplication virale optimale lors de l'infection aiguë avec LCMV.La maturation des glycoprotéines des arenavirus nécessite un clivage protéolytique par la protéase cellulaire subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). Nous avons démontré que le ciblage de l'activité enzymatique de SKI-1/SIΡ avec des inhibiteurs spécifiques est une stratégie prometteuse pour bloquer l'infection par les arenavirus. La caractérisation du mécanisme d'action de la protéase a, par ailleurs, révélé des différences au niveau du clivage entre les substrats cellulaires et viraux, ce qui ouvre de nouvelles perspectives en terme de développement de médicaments contre les arenavirus pathogènes pour l'homme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the bacterial flora present in skin lesions of patients with chiclero's ulcer from the Yucatan peninsula of Mexico using conventional culture methods (11 patients), and an immunocolorimetric detection of pathogenic Streptococcus pyogenes (15 patients). Prevalence of bacteria isolated by culture methods was 90.9% (10/11). We cultured, from chiclero's ulcers (60%), pathogenic bacterial such as Staphylococcus aureus (20%), S. pyogenes (1.6%), Pseudomonas aeruginosa (1.6%), Morganella morganii (1.6%), and opportunist pathogenic bacteria such as Klebsiella spp. (20.0%), Enterobacter spp. (20%), and Enterococcus spp. (20%). We also cultured coagulase-negative staphylococci in 40% (4/10) of the remaining patients. Micrococcus spp. and coagulase-negative staphylococci constituted the bacterial genuses more frequently isolated in the normal skin of patients with chiclero's ulcer and healthy individuals used as controls. We also undertook another study to find out the presence of S. pyogenes by an immunocolorimetric assay. This study indicated that 60% (9/15) of the ulcerated lesions, but not normal controls, were contaminated with S. pyogenes. Importantly, individuals with purulent secretion and holding concomitant infections with S. pyogenes, S. aureus, P. aeruginosa, M. morganii, and E. durans took longer to heal Leishmania (L.) mexicana infections treated with antimonial drugs. Our results suggest the need to eliminate bacterial purulent infections, by antibiotic treatment, before starting antimonial administration to patients with chiclero's ulcer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivity of two Gram positive (Staphylococcus aureus and Bacillus subtilis) and two Gram negative (Escherichia coli and Pseudomonas aeruginosa) pathogenic multi-drug resistant bacteria was tested against the crude extracts (cold aqueous, hot aqueous, and methanol extracts) of leaves and seeds of Argemone mexicana L. (Papaveraceae) by agar well diffusion method. Though all the extracts were found effective, yet the methanol extract showed maximum inhibition against the test microorganisms followed by hot aqueous extract and cold aqueous extract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iberian wolf (Canis lupus) is the top predator in the Iberian environments in which it lives, feeding on a wide range of species, thus encountering a wide range of disease agents. Therefore, the wolf can serve as sentinel of environmental contamination with pathogens. We investigated the exposure of free-living wolves to 14 serovars of Leptospira interrogans sensu lato. Kidney samples from 49 wolves collected from 2010-2013 in northwestern Spain were analysed by culture, direct immunofluorescence and polymerase chain reaction. Tissue fluids were analysed for antibodies by a microscopic agglutination test. Ten wolves (observed prevalence: 20%, 95% confidence interval = 11-33%) showed evidence of contact with leptospires, eight through direct detection and nine through serology (7 wolves were positive according to both techniques). Titres below the cut-off level were also detected in seven cases. Serovars confirmed were Canicola (n = 4), Icterohaemorrhagiae (n = 3) and Sejroë, Ballum and Grippotyphosa (n = 1 each), indicating that wolves were infected with serovars for which dogs, rodents and ungulates, are the natural hosts and supporting the utility of the wolf and other large predators as environmental sentinels for pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dermatophytes are highly specialized filamentous fungi which cause the majority of superficial mycoses in humans and animals. The high secreted proteolytic activity of these microorganisms during growth on proteins is assumed to be linked to their particular ability to exclusively infect keratinized host structures such as the skin stratum corneum, hair, and nails. Individual secreted dermatophyte proteases were recently described and linked with the in vitro digestion of keratin. However, the overall adaptation and transcriptional response of dermatophytes during protein degradation are largely unknown. To address this question, we constructed a cDNA microarray for the human pathogenic dermatophyte Trichophyton rubrum that was based on transcripts of the fungus grown on proteins. Profiles of gene expression during the growth of T. rubrum on soy and keratin protein displayed the activation of a large set of genes that encode secreted endo- and exoproteases. In addition, other specifically induced factors potentially implicated in protein utilization were identified, including heat shock proteins, transporters, metabolic enzymes, transcription factors, and hypothetical proteins with unknown functions. Of particular interest is the strong upregulation of key enzymes of the glyoxylate cycle in T. rubrum during growth on soy and keratin, namely, isocitrate lyase and malate synthase. This broad-scale transcriptional analysis of dermatophytes during growth on proteins reveals new putative pathogenicity-related host adaptation mechanisms of these human pathogenic fungi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pneumocystis jirovecii is a fungal parasite that colonizes specifically humans and turns into an opportunistic pathogen in immunodeficient individuals. The fungus is able to reproduce extracellularly in host lungs without eliciting massive cellular death. The molecular mechanisms that govern this process are poorly understood, in part because of the lack of an in vitro culture system for Pneumocystis spp. In this study, we explored the origin and evolution of the putative biotrophy of P. jirovecii through comparative genomics and reconstruction of ancestral gene repertoires. We used the maximum parsimony method and genomes of related fungi of the Taphrinomycotina subphylum. Our results suggest that the last common ancestor of Pneumocystis spp. lost 2,324 genes in relation to the acquisition of obligate biotrophy. These losses may result from neutral drift and affect the biosyntheses of amino acids and thiamine, the assimilation of inorganic nitrogen and sulfur, and the catabolism of purines. In addition, P. jirovecii shows a reduced panel of lytic proteases and has lost the RNA interference machinery, which might contribute to its genome plasticity. Together with other characteristics, that is, a sex life cycle within the host, the absence of massive destruction of host cells, difficult culturing, and the lack of virulence factors, these gene losses constitute a unique combination of characteristics which are hallmarks of both obligate biotrophs and animal parasites. These findings suggest that Pneumocystis spp. should be considered as the first described obligate biotrophs of animals, whose evolution has been marked by gene losses.