894 resultados para human factors
Resumo:
This paper discusses human factors issues of low cost railway level crossings in Australia. Several issues are discussed in this paper including safety at passive level railway crossings, human factors considerations associated with unavailability of a warning device, and a conceptual model for how safety could be compromised at railway level crossings following prolonged or frequent unavailability. The research plans to quantify safety risk to motorists at level crossings using a Human Reliability Assessment (HRA) method, supported by data collected using an advanced driving simulator. This method aims to identify human error within tasks and task units identified as part of the task analysis process. It is anticipated that by modelling driver behaviour the current study will be able to quantify meaningful task variability including temporal parameters, between participants and within participants. The process of complex tasks such as driving through a level crossing is fundamentally context-bound. Therefore this study also aims to quantify those performance-shaping factors that contribute to vehicle train collisions by highlighting changes in the task units and driver physiology. Finally we will also consider a number of variables germane to ensuring external validity of our results. Without this inclusion, such an analysis could seriously underestimate risk.
Resumo:
Railway level crossings present an arguably unique interface between two transport systems that differ markedly in their performance characteristics, their degrees of regulation and their safety cultures. Railway level crossings also differ dramatically in the importance they represent as safety issues for the two modes. For rail, they are the location of a large proportion of fatalities within the system and are therefore the focus of much safety concern. For the road system, they comprise only a few percent of all fatalities, although the potential for catastrophic outcomes exist. Rail operators and regulators have traditionally required technologies to be failsafe and to demonstrate high levels of reliability. The resultant level of complexity and cost has both limited their extent of application and led to a need to better understand how motorists comprehend and respond to these systems.
Resumo:
This discussion has outlined a theoretical and pragmatic framework to demonstrate that future research involving the analysis of human performance in surgical should encourage the use of phenomenology to enhance the knowledge base of this area of study. Merging experiential (first-person) and experimental (third-person) methods may possibly help improve research designs and analyses in the investigation of robotics in surgical performance. By relying solely on third-person techniques, the current methodology and interpretation used to analyze human performance in surgical robotics is limited. Recent advances in cognitive science and psychology have also recognized this limitation and have now begun to shift to neurophenomenology. Finally, discussion on recent robotics research presented here demonstrates the potential phenomenology holds for augmenting the methodological and analysis techniques currently used by researchers of human performance in surgical robotics.
Resumo:
The availability of health information is rapidly increasing; its expansion and proliferation is inevitable. At the same time, breeding of health information silos is an unstoppable and relentless exercise. Information security and privacy concerns are therefore major barriers in the eHealth socio-eco system. We proposed Information Accountability as a measurable human factor that should eliminate and mitigate security concerns. Information accountability measures would be practicable and feasible if legislative requirements are also embedded. In this context, information accountability constitutes a key component for the development of effective information technology requirements for health information system. Our conceptual approach to measuring human factors related to information accountability in eHealth is presented in this paper with some limitations.
Resumo:
It is commonly held that the ability of the estimator to apply professional skill and judgement is an important factor in the production of an accurate cost estimate. This chapter identifies these abilities and attributes of the individual estimator that affects estimating accuracy. These human factors are examined under the headings of the role of the estimators, skills of the estimator, characteristics of the estimator, interpretation of data, and the influence of expertise.
Resumo:
Engineering design processes are necessary to attain the requisite standards of integrity for high-assurance safety-related systems. Additionally, human factors design initiatives can provide critical insights that parameterise their development. Unfortunately, the popular perception of human factors as a “forced marriage” between engineering and psychology often provokes views where the ‘human factor’ is perceived as a threat to systems design. Some popular performance-based standards for developing safety-related systems advocate identifying and managing human factors throughout the system lifecycle. However, they also have a tendency to fall short in their guidance on the application of human factors methods and tools, let alone how the outputs generated can be integrated in to various stages of the design process. This case study describes a project that converged engineering with human factors to develop a safety argument for new low-cost railway level crossing technology for system-wide implementation in Australia. The paper enjoins the perspectives of a software engineer and cognitive psychologist and their involvement in the project over two years of collaborative work to develop a safety argument for low-cost level crossing technology. Safety and reliability requirements were informed by applying human factors analytical tools that supported the evaluation and quantification of human reliability where users interfaced with the technology. The project team was confronted with significant challenges in cross-disciplinary engagement, particularly with the complexities of dealing with incongruences in disciplinary language. They were also encouraged to think ‘outside the box’ as to how users of a system interpreted system states and ehaviour. Importantly, some of these states, while considered safe within the boundary of the constituent systems that implemented safety-related functions, could actually lead the users to engage in deviant behaviour. Psychology explained how user compliance could be eroded to levels that effectively undermined levels of risk reduction afforded by systems. Linking the engineering and psychology disciplines intuitively, overall safety performance was improved by introducing technical requirements and making design decisions that minimized the system states and behaviours that led to user deviancy. As a commentary on the utility of transdisciplinary collaboration for technical specification, the processes used to bridge the two disciplines are conceptualised in a graphical model.
Resumo:
This paper describes a safety data recording and analysis system that has been developed to capture safety occurrences including precursors using high-definition forward-facing video from train cabs and data from other train-borne systems. The paper describes the data processing model and how events detected through data analysis are related to an underlying socio-technical model of accident causation. The integrated approach to safety data recording and analysis insures systemic factors that condition, influence or potentially contribute to an occurrence are captured both for safety occurrences and precursor events, providing a rich tapestry of antecedent causal factors that can significantly improve learning around accident causation. This can ultimately provide benefit to railways through the development of targeted and more effective countermeasures, better risk models and more effective use and prioritization of safety funds. Level crossing occurrences are a key focus in this paper with data analysis scenarios describing causal factors around near-miss occurrences. The paper concludes with a discussion on how the system can also be applied to other types of railway safety occurrences.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
While the exact rate of incidence is unknown (due to the paucity of exposure data), it is acknowledged that safety compromising accidents and incidents occur in the led outdoor activity domain, and that they represent an important issue. Despite this, compared to other safety critical domains, very little is currently known about the key causal factors involved in such accidents and incidents. This report presents the findings derived from a review of the literature, the aim of which was to identify the Human Factors-related issues involved in accidents and incidents occurring in this area. In addition, to demonstrate the utility of systems-based, theoretically underpinned accident analysis methodologies for identifying the systemic and human contribution to accidents and incidents occurring in the led outdoor activity domain, three case-study accidents were analysed using two such approaches. In conclusion, the review identified a range of causal factors cited in the literature; however, it was noted that the majority of the research undertaken to date lacks theoretical underpinning and focuses mainly on instructor or activity leader causal factors, as opposed to the wider system failures involved. The accident analysis presented highlighted the utility of systems-based, theoretically underpinned accident analysis methodologies for analysing and learning from accidents and incidents in the led outdoor activity sector. In closing, the need for further research in the area is articulated, in particular focussing on the development of standardised and universally accepted accident and incident reporting systems and databases, the development of data driven, theoretically underpinned causal factor taxonomies, and the development and application of systems-based accident analysis methodologies.
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided active level crossings with flashing lights; and passive level crossings controlled by stop and give way signs. The current strategy is to annually upgrade passive level crossings with active controls within a given budget, but the 5,900 public passive crossings are too numerous to be upgraded all. The rail industry is considering alternative options to treat more crossings. One of them is to use lower cost equipment with reduced safety integrity level, but with a design that would fail to a safe state: in case of the impossibility for the system to know whether a train is approaching, the crossing changes to a passive crossing. This is implemented by having a STOP sign coming in front of the flashing lights. While such design is considered safe in terms of engineering design, questions remain on human factors. In order to evaluate whether such approach is safe, we conducted a driving simulator study where participants were familiarized with the new active crossing, before changing the signage to a passive crossing. Our results show that drivers treated the new crossing as an active crossing after the novelty effect had passed. While most participants did not experience difficulties with the crossing being turned back to a passive crossing, a number of participants experienced difficulties stopping in time at the first encounter of such passive crossing. Worse, a number of drivers never realized the signage had changed, highlighting the link between the decision to brake and stop at an active crossing to the lights flashing. Such results show the potential human factor issues of changing an active crossing to a passive crossing in case of failure of the detection of the train.
Resumo:
Human factors such as distraction, fatigue, alcohol and drug use are generally ignored in car-following (CF) models. Such ignorance overestimates driver capability and leads to most CF models’ inability in realistically explaining human driving behaviors. This paper proposes a novel car-following modeling framework by introducing the difficulty of driving task measured as the dynamic interaction between driving task demand and driver capability. Task difficulty is formulated based on the famous Task Capability Interface (TCI) model, which explains the motivations behind driver’s decision making. The proposed method is applied to enhance two popular CF models: Gipps’ model and IDM, and named as TDGipps and TDIDM respectively. The behavioral soundness of TDGipps and TDIDM are discussed and their stabilities are analyzed. Moreover, the enhanced models are calibrated with the vehicle trajectory data, and validated to explain both regular and human factor influenced CF behavior (which is distraction caused by hand-held mobile phone conversation in this paper). Both the models show better performance than their predecessors, especially in presence of human factors.