985 resultados para human enhancement
Resumo:
Experiments demonstrating human enhancement through the implantation of technology in healthy humans have been performed for over a decade by some academic research groups. More recently, technology enthusiasts have begun to realize the potential of implantable technology such as glass capsule RFID transponders. In this paper it is argued that implantable RFID devices have evolved to the point whereby we should consider the devices themselves as simple computers. Presented here is the infection with a computer virus of an RFID device implanted in a human. Coupled with our developing concept of what constitutes the human body and its boundaries, it is argued that this study has given rise to the world’s first human infected with a computer virus. It has taken the wider academic community some time to agree that meaningful discourse on the topic of implantable technology is of value. As developments in medical technologies point to greater possibilities for enhancement, this shift in thinking is not too soon in coming.
Resumo:
In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.
Resumo:
Subdermal magnetic implants originated as an art form in the world of body modification. To date an in depth scientific analysis of the benefits of this implant has yet to be established. This research explores the concept of sensory extension of the tactile sense utilising this form of implantation. This relatively simple procedure enables the tactile sense to respond to static and alternating magnetic fields. This is not to say that the underlying biology of the system has changed; i.e. the concept does not increase our tactile frequency response range or sensitivity to pressure, but now does invoke a perceptual response to a stimulus that is not innately available to humans. Within this research two social surveys have been conducted in order to ascertain one, the social acceptance of the general notion of human enhancement, and two the perceptual experiences of individuals with the magnetic implants themselves. In terms of acceptance to the notion of sensory improvement (via implantation) ~39% of the general population questioned responded positively with a further ~25% of the respondents answering with the indecisive response. Thus with careful dissemination a large proportion of individuals may adopt this technology much like this if it were to become available for consumers. Interestingly of the responses collected from the magnetic implants survey ~60% of the respondents actually underwent the implant for magnetic vision purposes. The main contribution of this research however comes from a series of psychophysical testing. In which 7 subjects with subdermal magnetic implants, were cross compared with 7 subjects that had similar magnets superficially attached to their dermis. The experimentation examined multiple psychometric thresholds of the candidates including intensity, frequency and temporal. Whilst relatively simple, the experimental setup for the perceptual experimentation conducted was novel in that custom hardware and protocols were created in order to determine the subjective thresholds of the individuals. Abstract iv The overall purpose of this research is to utilise this concept in high stress scenarios, such as driving or piloting; whereby alerts and warnings could be relayed to an operator without intruding upon their other (typically overloaded) exterior senses (i.e. the auditory and visual senses). Hence each of the thresholding experiments were designed with the intention of utilising the results in the design of signals for information transfer. The findings from the study show that the implanted group of subjects significantly outperformed the superficial group in the absolute intensity threshold experiment, i.e. the implanted group required significantly less force than the superficial group in order to perceive the stimulus. The results for the frequency difference threshold showed no significant difference in the two groups tested. Interestingly however at low frequencies, i.e. 20 and 50 Hz, the ability of the subjects tested to discriminate frequencies significantly increased with more complex waveforms i.e. square and sawtooth, when compared against the typically used sinewave. Furthermore a novel protocol for establishing the temporal gap detection threshold during a temporal numerosity study has been established in this thesis. This experiment measured the subjects’ capability to correctly determine the number of concatenated signals presented to them whilst the time between the signals, referred to as pulses, tended to zero. A significant finding was that when altering the length of, the frequency of, and the number of cycles of the pulses, the time between pulses for correct recognition altered. This finding will ultimately aid in the design of the tactile alerts for this method of information transfer. Preliminary development work for the use of this method of input to the body, in an automotive scenario, is also presented within this thesis in the form of a driving simulation. The overall goal of which is to present warning alerts to a driver, such as rear-to-end collision, or excessive speeds on roads, in order to prevent incidents and penalties from occurring. Discussion on the broader utility of this implant has been presented, reflecting on its potential use as a basis for vibrotactile, and sensory substitution, devices. This discussion furthers with postulations on its use as a human machine interface, as well as how a similar implant could be used within the ear as a hearing aid device.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
#14ART: Arte e Desenvolvimento Humano propõe-se discutir novos territórios para uma maior sustentabilidade, assim como debater futuras evoluções criativas. O evento procurará entrepor-se em zonas de contato entre domínios tradicionalmente separadas - a arte e a ciência, pesquisa acadêmica e práticas criativas independentes, politicas sustentáveis e engajamento social, para o século XXI. Pretende-se que a discussão se centre, sobretudo, sobre como explorar o potencial transformativo da arte na pós-média. Hoje, de acordo com vários pensadores - Rosalind Krauss, a Lev Manovich, Peter Weibel – estamos numa fase pós- média; não existe um só meio, nos nossos dias, que domine o discurso da pratica artística contemporânea no campo dos média, bem pelo contrário os média encontram-se, hoje, engajados no pensamento critico do discurso da contemporaneidade. Através dos eventos anteriores deste Encontro Internacional, ficou claro que a arte hoje - com as condições proporcionadas pelo discurso do pós-média - oferece um potencial muito mais inteligente e interessante elocução para as artes. No entanto, as qualidade simbólicas e estéticas, bem como o pensamento critico e os aspectos investigativos e de confronto teórico da “pré-média arte”, também se apresentam ser tão importantes para a “pós-media arte”, obrigando o discurso artístico a manter um fio condutor entre o físico (a obra) e o mental (conceito) - realidades e utopias.
Resumo:
Thèse réalisée en cotutelle, entre l'Université de Montréal, au Département de Sociologie, et l'Université de Rennes 1, à la Faculté de Droit et de Science Politique
Resumo:
Article
Resumo:
Is the human body a suitable place for a microchip? Such discussion is no longer hypothetical - in fact in reality it has not been so for some years. Restorative devices such as pacemakers and cochlear implants have become well established, yet these sophisticated devices form notably intimate links between technology and the body. More recent developments in engineering technologies have meant that the integration of silicon with biology is now reaching new levels - with devices which interact directly with the brain. As medical technologies continue to advance, their potential benefits for human enhancement will become increasingly attractive, and so we need to seriously consider where this may take us. In this paper, an attempt is made to demonstrate that, in the medical context, the foundations of more advanced implantable enhancement technologies are already notably progressed, and that they are becoming more science fact than is widely considered. A number of wider moral, ethical and legal issues stem from enhancement applications and it is difficult to foresee the social consequences, the fundamental changes on our very conception of self and the impact on our identity of adoption long term. As a result, it is necessary to acknowledge the possibilities and is timely to have debate to address the wider implications these possibilities may bring.
Resumo:
In this paper an attempt has been made to take a look at. how the use of implant and electrode technology can now be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. An overview of some of the latest developments in the field of Brain to Computer Interfacing is also given in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that have been and are being undertaken and reported on, as opposed to those speculated, simulated or proposed as future projects. Related areas are discussed briefly only in the context of their contribution to the studies being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is made directly with the cerebral cortex and/or nervous system. Tests and experimentation which do not involve human subjects are invariably carried out a priori to indicate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies from this area are discussed including our own involving neural growth. The paper goes on to describe human experimentation, in which neural implants have linked the human nervous system bi-directionally with technology and the internet. A view is taken as to the prospects for the future for this implantable computing in terms of both therapy and enhancement.
Resumo:
In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.
Resumo:
In this paper an attempt has been made to take a look at how the use of implant and electrode technology can now be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. An overview of some of the latest developments in the field of Brain to Computer Interfacing is also given in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that have been and are being undertaken and reported on, as opposed to those speculated, simulated or proposed as future projects. Related areas are discussed briefly only in the context of their contribution to the studies being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is made directly with the cerebral cortex and/or nervous system. Tests and experimentation which do not involve human subjects are invariably carried out a priori to indicate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies from this area are discussed including our own involving neural growth. The paper goes on to describe human experimentation, in which neural implants have linked the human nervous system bi-directionally with technology and the internet. A view is taken as to the prospects for the future for this implantable computing in terms of both therapy and enhancement.
Resumo:
The capabilities of postmodern biotechnology inevitably lead to questioning if it is morally acceptable to use all possibilities offered by technology. In sport, this very complex issue is dealt with by drawing clear boundaries between naturalness and artificiality. Currently, new biotechnology is constantly being produced and with this, boundaries between naturalness and artificiality, between normal and abnormal, human and hybrid are constantly shifting . “Human enhancement” is a fascinating prism that reflects contemporary questions of participation, justice, equality and the autonomy of the subject in all social fields. The area of elite sports is particularly affected by “human enhancement”, according to the principle of exceeding what has come before, of aiming higher, faster and further. This paper analyses the postulated “naturalness” in the regulative and normalising function in the area of elite sports, in connection with Foucault’s theory of governmentality. The example of the South African sprinter Oscar Pistorius appears to be particularly suited to illustrate current definition difficulties in the area of disabled and non-disabled people in differentiated competitive sports. His is a vivid example of a multifaceted body-sociological analysis of current sport culture and the construction of reality or naturalness in the framework of the discourse of drafting and negotiating the accreditation for sprint competitions of non-disabled athletes, most recently in the London Olympics 2012. Using the case study of Oscar Pistorius, the negotiating processes in relation to the argumentation logic, dynamics and resistance in shifting distinctions are presented in detail using the fundamental documents of the IOC, IPC, CAS and IAAF. Represented through the inclusion and exclusion processes are hierarchies of the body that are (re)consolidated and transformed. The central question emerges as to how the worth of equal opportunity and fairness in regard to “naturalness” can be reconsolidated or transformed.
Resumo:
The important developments in technology in all areas of human life have generated high expectations and hopes with regard to the health sector. Science and technology have favored the development of incredible therapeutic treatments to help resolve numerous problems relating to illness and disability. Nonetheless, many developments in the therapeutic realm have given rise to discussions over the possibility of whether this same scientific and technological progress could be beneficial even for those who may not be sick. One may ask: why not apply the same knowledge and technology used for treatment of illness for conditions where therapy is not necessary, but there is a desire to care for, improve and enhance human person? These new horizons offered by biomedical technologies undoubtedly express a deep desire of every person for health, happiness, and a long life. In order to offer a response to these questions, current biomedical technologies and those in development offer a wide range of possibilities. Therefore, in this investigation we attempt to identify and define four areas of non-therapeutic treatment: illness prevention, health promotion, improving human nature, and human enhancement. These four areas, which do not directly regard illness, give rise to a series of questions, which range from those regarding the meaning of health and illness to those concerning anthropological questions, such as situations and conditions that must be taken into account so human dignity is respected. The treatment, improvement and enhancement of the human being imply clarifying in scientific and technological terms the truth and meaning of the human person as such. This research identifies and looks at the relationship between the four anthropological cornerstones which non-therapeutic biomedical technologies should be based upon so as not to impact or violate the dignity of the human person. This research presents the anthropological boundaries which non-therapeutic biomedical technologies should take into consideration so as not to alter or violate the dignity of the human person. At the same time, the research proposes an anthropological foundation on which to build a code of ethics for non-therapeutic biomedical technologies. El gran desarrollo de las tecnologías en todos los ámbitos de la vida del hombre ha generado una gran expectativa y esperanza en lo que se refiere a la salud. Ciencia y técnica están aportando grandes beneficios en materia terapéutica, ayudando a resolver muchos problemas concernientes a la enfermedad y a la discapacidad. Pero este desarrollo que se ha producido en el ámbito terapéutico nos conduce a la formulación de preguntas sobre las posibilidades que esos avances técnico-científicos pueden aportar en beneficio del hombre, cuando no se encuentra enfermo: ¿por qué no pueden aplicarse los conocimientos y tecnologías usados en terapia a un ámbito diferente, no terapéutico, con el fin de mantener, mejorar o incluso potenciar al hombre? Ciertamente los nuevos horizontes que abren las Tecnologías Biomédicas encuentran repercusión en el deseo de bienestar, de felicidad e incluso de prolongación de la vida presente en todos los hombres. Para responder a esta pregunta las Tecnologías Biomédicas han desarrollado y están desarrollando una gama muy amplia de posibilidades. En este trabajo intentamos organizar en cuatro áreas los conceptos de los tratamientos no-terapéuticos: prevención de la enfermedad, promoción de la salud, mejoramiento de la naturaleza humana y potenciación del hombre. Estas cuatro áreas, que no se refieren directamente a la enfermedad, generan una serie de interrogantes que van desde las preguntas sobre el significado de salud y enfermedad, hasta las cuestiones antropológicas relativas a la posibilidad y las condiciones que se han de dar para que tales acciones respeten la dignidad humana. Cuidar, mejorar y potenciar al hombre implica que los objetivos de la ciencia y de la técnica mantengan siempre claros los valores y la realidad del hombre en cuanto tal. ... Este Trabajo de Investigación presenta los límites antropológicos dentro de los cuales deben moverse las Tecnologías Biomédicas no-terapéuticas para no alterar el ser ni menoscabar la dignidad del hombre. Y ofrece los fundamentos antropológicos sobre los cuales se pueda construir un código ético y deontológico para las Tecnologías Biomédicas no-terapéuticas.
Resumo:
Travail créatif / Creative Work
Resumo:
Travail créatif / Creative Work