9 resultados para hukkalämpö
Resumo:
Tässä loppuraportissa esitetään projektin "Kannattavuusanalyysi ORC-voimalan soveltamisesta hyödyntämään dieselvoimalan hukkalämpöä, Tekes DrNo 1549/401/98" tulokset. ORC-prosessilla (Organic Rankine Cycle) tarkoitetaan Rankine-prosessia, jossakiertoaineena veden asemesta on sopiva orgaaninen neste, esimerkiksi tolueeni. ORC-prosessi soveltuu hyvin nimenomaan matalalla lämpötilatasolla vapautuvan hukkalämmön hyödyntämiseen. Tutkimus liittyy vuonna 1981 aloitettuun suurnopeustekniikan tutkimushankkeeseen. Tutkimuksen lähtökohtana oli tropiikin olosuhteissa peruskuormaa ajava raskasöljykäyttöinen Wärtsilä NSD 18V46 voimalaitosmoottori, jonka hukkalämmöistä tuli kyetä tuottamaan sähköä mahdollisimman alhaisilla investointikustannuksilla. Kaukolämmöntuotanto rajattiin tämän selvityksen ulkopuolelle. Edullisimmaksi perustapaukseksi valittiin seitsemän turbogeneraattorin ORC-laitos, joka hyödyntää ainoastaan moottorin pakokaasulämpöä. Kyseisen ORC-laitoksen nettosähköteho on 1142 kW, joten se lisäisi dieselmoottorin tehoa 6,8 %. ORC-laitoksen myyntihinta olisi noin 7,67 Mmk, mikäli lauhdutin voidaan rakentaa ruostumattomasta teräksestä ja noin 9,01 Mmk, mikäli olisi käytettävä titaanilauhdutinta. ORC-laitoksen ominaisinvestointikustannus olisi siten noin 6700 mk/kW - 7900 mk/kW materiaalivalinnoista riippuen. Mainittu hinta sisältää sekä komponenttien valmistajien että systeemi-integraattorin katteet. Koska höyrystimen hinta vaikuttaa olennaisesti ORC-laitoksen hintaan, voidaan puhtailla maakaasupolton savukaasuilla arvioida ominaisinvestoinnin olevan noin 1000 mk/kW alhaisempi. Olettaen 6000 h/a huipun käyttöaika saadaan ORC:llä tuotetun sähkön hinnaksi noin 0,11 mk/kWh. Suomeen rakennettavalle ORC-laitokselle on todennäköisesti lisäksi saatavissa 30 % investointituki ja sähköveron palautus. - Teoriassa voidaan osoittaa, että dieselmoottorin tehoa voidaan ORC:llä lisätä jopa 18 %, mutta ominaisinvestointi on tällöin merkittävästi korkeampi. ORC-laitoksen turbiinin 1D suunnittelua tarkennettiin sekä laitoksen turbiini mallinnettiin CFD-laskennan (numeerisen virtauslaskennan) avulla osana tätä tutkimusta. Näin kyettiin nostamaan turbiinin hyötysuhdetta, ja CFD-laskennan perusteella voidaan nyt aikaisempaa varmemmin ennustaa turbiinin todellinen hyötysuhde. ORC-laitoksen dynaaminen simulointiohjelma saatiin niin ikään valmiiksi tämän projektin puitteissa. Simulointiohjelman avulla voitiin asettaa laitoksen säädinparametrit sekä simuloida voimalan käynnistys-, ajo- sekä häiriötilanteita. Tehtyjen simulointien perusteella tehtiin johtopäätökset laitoksen säätöjärjestelmän toimivuudesta ja tuorehöyryn tilaarvojen valinnasta.
Resumo:
Viilunkuivaus vaneriteollisuudessa on energiaintensiivinen prosessi, josta syntyvä hukkalämpö kannattaa ottaa talteen ja hyödyntää. Työ käsittelee erilaisten lämmöntalteenottovariaatioiden tuotteistusta ja kannattavuutta, sekä sisältää laitteiston riskianalyysin. Aiemman asiakaskohtaisen räätälöinnin sijaan, laitteiston modulaarinen tuoterakenne on otettava tuotteistuksen lähtökohdaksi. Modulaarisen tuoterakenteen ansiosta erilaisiin asiakastarpeisiin pystytään vastaamaan aiempaa tehokkaammin, kiitos erilaisten variaatioiden. Standardien ja yhtenäisten rajapintojen myötä muun muassa suunnittelua, projektinhoito ja myyntiä saadaan tehostettua. Lämmöntalteenottoratkaisuille luodaan kolme eri varustelutasoa: perus, korkea ja luksus. Näillä eri varianteilla pystytään vastamaan entistä kattavammin eri markkina-alueiden asiakastarpeisiin. Kannattavuuslaskelmat todistavat, että lämmöntalteenoton avulla saadaan merkittäviä energiasäästöjä ja eri laitteistovariaatiot maksavat itsensä erittäin nopeasti takaisin, vaikka esimerkiksi sähköenergian hinta nousisi radikaalisti. Lämmöntalteenoton voidaankin katsoa olevan aina erittäin kannattavaa. Laitteistosta on tunnistettu myös tekniset riskit, joihin on puututtava välittömästi sekä lukuisia toimenpide-ehdotuksia, joiden avulla laitteiston tuomintaa voidaan tehostaa ja muuttaa turvallisemmaksi. Riskianalyysi antaa myös suuntaviivoja tuotteistukselle sekä laitteiston huolto- ja käyttöohjeistolle.
Resumo:
Tämä diplomityö on osa FCEP hankkeen Lappeenrannan teknillisessä yliopistossa tehtävää tutkimusta polttomoottoreiden energiatehokkuuden parantamisesta. Työn tavoitteena on saada tutkimustietoa polttomoottoreiden ahtoilman hukkalämmön hyödyntämisestä sähköntuotannossa Rankine-prosessilla. Tavoitteena on myös suorittaa ahtoilman hukkalämpöä hyödyntävän koelaitteiston prosessitekninen mitoitus. Työssä kartoitetaan sovelluskohteeseen sopivimmat kiertoaineet sekä suoritetaan prosessin lämmönsiirtimien ja putkiston lämpö- ja virtaustekninen päämitoitus. Työssä tarkasteltavaksi moottoriksi valittiin Wärtsilä 4R32 – moottori. Laskennat suoritettiin moottorin valmistajan antamien arvojen perusteella. Laskennan perusperiaatteena oli vertailla vesihöyryprosessia ja ORC-prosessia keskilämpötilaisen ahtoilman hyödyntämisessä. Työssä vertailtiin 12 eri kiertoaineen prosessihyötysuhdetta, saatavaa sähkötehoa sekä prosessin painetasoja. Kiertoainevertailun perusteella koelaitteeseen valittiin neljä kohteeseen parhaiten soveltuvinta kiertoainetta, joille mitoitettiin höyrystin, lauhdutin, rekuperaattori ja putkisto. Diplomityön laskennan perusteella tutkimuksen kohteena olleen moottorin sähköntuotannon lisäykseksi saatiin 1,77 %, kun ahtoilman hukkalämpö muunnetaan Rankine-prosessilla sähköksi. Työssä saatiin arvokasta tietoa polttomoottorin ahtoilman hukkalämmön sähköksi muuntamisesta sekä vesihöyryprosessilla, että ORC-prosessilla.
Resumo:
Tässä työssä tarkastellaan teollisuuden ylijäämälämmön hyödyntämistä kaukolämpöverkoissa liiketoimintamallin näkökulmasta. Työn tilaaja on YIT Teollisuus Oy, joka haluaa osaltaan olla mukana ratkaisemassa ilmastonmuutoksesta ja hiilidioksidipäästöjen vähentämistarpeista aiheutuvia yhteiskunnan kehitystarpeita. Energiatehokkuuden parantaminen on yksi nopeimmista keinoista vähentää päästöjä. Teollisuuden energiatehokkuutta voidaan parantaa ottamalla talteen sähköntuotannossa ja tuotantoprosesseissa syntyvää ylijäämälämpöä. Aikaisempien tutkimusten perusteella tiedetään, että Suomessa syntyy vuosittain noin 4–6 TWh ylijäämälämpöä, joka voitaisiin hyödyntää jo olemassa olevien kaukolämpöverkkojen välityksellä rakennusten lämmittämiseen. Kuitenkin vuonna 2008 teollisuus myi ylijäämälämpöä kaukolämpöverkkoihin yhteensä vain 770 GWh, mikä vastaa noin 2,5 prosenttia kokonaiskaukolämmön tarpeesta. Tämän työn tuloksena syntyi liiketoimintamalli, joka esittelee ne palvelut, jotka YIT tuottaa asiakkailleen tilanteissa, joissa teollisuudessa syntyvää ylijäämälämpöä hyödynnetään kaukolämpöverkoissa. Jotta liiketoimintamalli toimisi käytännössä, on siitä oltava hyötyä kaikille osapuolille. Asiakkaan on siis voitava kattaa palvelusta ja sen rahoituksesta syntyvät kustannukset myydyn ylijäämälämmön tuotolla (teollisuuslaitos) tai säästyneistä energian hankintakustannuksista (kaukolämpöyhtiö). Eniten ylijäämälämmön käytöstä voivat hyötyä kaukolämpöyhtiöt, joiden tuotannosta korkeintaan pieni osa tulee yhteistuotannosta ja joilla uusiutuvien energialähteiden osuus on vähäinen. Lisäksi kaukolämpöverkon koon vuotuisena kulutuksena mitattuna on oltava riittävän suuri ja kaukolämmön hinnan suhteellisen korkea. Myös alueen ennustettu väestönkasvu ja uudet suunnitteilla olevat asuinalueet saattavat parantaa ylijäämälämmön hyödyntämisen houkuttelevuutta. YIT:n näkökulmasta ylijäämälämmön talteenottoprojektit ovat hyvä lisä sen nykyiseen palvelutarjontaan. Myös yhteiskunnallisella tasolla aihe on merkittävä. Vaikka nykytietämyksen mukaan energian käytön tehostaminen ja päästöttömän tuotannon lisääminen ovat molemmat yhtä merkittäviä keinoja ilmastotavoitteiden saavuttamisen kannalta, panostetaan Suomessa tällä hetkellä lähinnä tuotannon tukemiseen. Lähivuosien poliittiset ratkaisut vaikuttavatkin vahvasti siihen, kuinka paljon tulevaisuudessa ylijäämälämpöä hyödynnetään rakennusten lämmittämisessä.
Resumo:
I takt med den ekonomiska tillväxten har CO2-utsläppen till atmosfären ständigt ökat, och utan kraftiga åtgärder kommer de att fortsätta att öka i allt snabbare takt. Konsekvenserna av en påtagligt förhöjd atmosfärisk CO2-halt är fortfarande osäkra (men eventuellt katastrofala) och fenomenet går under namnet global uppvärmning eller klimatförändring. CCS från engelskans ”carbon dioxide capture and storage” framstår som ett alternativ för att bekämpa de ständigt ökande CO2-utsläppen. Ett av de mer intressanta, och för Finlands del ända CCS-alternativet, baserar sig på naturens egna sätt att begränsa atmosfärisk CO2, nämligen vittring. Naturlig vittring, som förenklat innefattar nedbrytningen av sten/berg (även känd som erosion) och de därpå följande reaktionerna med CO2-mättat regnvatten. Slutresultatet är en utfällning av fasta mineraler som nu bundit CO2 i form av kalcium- och magnesiumkarbonat. Kalciumkarbonat är även bättre känt som kalksten, d.v.s. CO2 blir bundet i sten. Det gäller dock att snabba upp denna process, som i naturen är ytterst långsam, på ett ekonomiskt och miljömässigt hållbart sätt. Hittills har ett antal metoder för att påskynda naturlig vittring, eller med andra ord öka CO2-upptagningsförmågan av olika mineraler föreslagits. De mera etablerade uttrycken (lånade från engelskan) talar om mineralkarbonatisering och CO2-mineralisering. Till skillnad från många andra CO2-mineraliseringsalternativ är det alternativ som behandlas i denna avhandling i hög grad baserat på möjligheten att utnyttja den värme som frigörs vid karbonatisering. I teorin är det möjligt att föreställa sig en mineraliseringsprocess som inte kräver extern energi, men tillsvidare har man dock inte lyckats uppnå detta mål. Den process som presenteras i denna avhandling går ut på att man utvinner magnesium ur i naturen vanligt förekommande magnesiumrika mineraler, konverterar det till magnesiumhydroxid och därefter karbonatiserar det till magnesiumkarbonat. I rätta förhållanden kan magnesiumhydroxid reagera med CO2 mycket snabbt och i nuläget har processen potential att minska CO2-utsläppen från industri där spillvärme finns till förfogande (t.ex. cement- och stålindustrin). Fortsatt forskning är dock ett måste för att kunna påverka CO2-utsläppen i en globalt signifikant skala.
Resumo:
Tavoitteet energiatehokkuuden parantamisesta ja energiantuotannon ympäristövaikutusten vähentämisestä ovat nostaneet kiinnostusta hajautettua energiantuotantoa kohtaan. Pienissä kokoluokissa ei kuitenkaan sähköntuottaminen ole kannattavaa perinteisillä menetelmillä kuten vesihöyryprosessilla. Mikrokokoluokassa (alle 50 kWe) yksi varteenotettavimmista keinoista sähköntuotantoon on mikro ORC-prosessi. Tässä kandidaatintyössä on tavoitteena löytää mikro ORC-voimaloiden potentiaalisimpia sovelluskohteita ja ratkaisuja niiden hyödyntämiseen. Selvitystyön perusteella mikro ORC-voimaloiden potentiaalisimpia sovelluskohteita ovat hukkalämpöjen hyödyntäminen teollisuus- ja energiantuotantoprosesseissa, pienet CHP-laitokset, pienet lämpölaitokset, ajoneuvojen polttomoottorit, syrjäisten kohteiden sähköntuotanto sekä aurinkokeräimien ja kaukolämpöverkon hyödyntäminen rakennusten energiaomavaraisuuden parantamisessa.
Resumo:
Tässä työssä esitellään yleisesti ORC-prosessi, sen toimintaperiaate ja käyttökohteet. Työn tavoitteena oli todentaa diesel-moottorin savukaasujen lämpöenergian sähköenergiaksi muuntavan mikro-ORC-energianmuuntimen suorituskyky. Suorituskyky pyrittiin toteamaan laskemalla laboratoriomittauksista saadusta datasta koelaitoksen sähköntuotannon hyötysuhde ja vertaamalla sitä mallinnuksessa laskettuun hyötysuhteeseen. Esitys käytännöstä suorituskyvyn todentamiseen kuuluu työn sisältöön. Koelaitoksen suorituskykyä ei pystytty toteamaan turbogeneraattoriin liittyvien ongelmien vuoksi. Tarkasteltavaksi tähän työhön jäi koelaitoksen suorituskykyyn olennaisesti liittyvien laitoskomponenttien toiminta niille tyypillisten mittausdatasta laskettujen tunnuslukujen kautta. Koelaitoksella käytettyjen lämmönsiirrinten todettiin olevan kykeneviä siirtämään tarpeeksi lämpöenergiaa 130 kW jarruteholla toimivan diesel-moottorin savukaasujen lämmöstä sähköenergian tuotantoon. Laitoksen kaupallistamista tarkasteltiin asiakkaan ja valmistajan näkökulmasta. Tarkasteluun sisältyi katsaus kaupalliseen versioon kuuluvista ominaisuuksista, alihankinnasta ja säädöksistä, jotka laitoksen on täytettävä markkinoille päästäkseen.
Resumo:
Increasing amount of renewable energy source based electricity production has set high load control requirements for power grid balance markets. The essential grid balance between electricity consumption and generation is currently hard to achieve economically with new-generation solutions. Therefore conventional combustion power generation will be examined in this thesis as a solution to the foregoing issue. Circulating fluidized bed (CFB) technology is known to have sufficient scale to acts as a large grid balancing unit. Although the load change rate of the CFB unit is known to be moderately high, supplementary repowering solution will be evaluated in this thesis for load change maximization. The repowering heat duty is delivered to the CFB feed water preheating section by smaller gas turbine (GT) unit. Consequently, steam extraction preheating may be decreased and large amount of the gas turbine exhaust heat may be utilized in the CFB process to reach maximum plant electrical efficiency. Earlier study of the repowering has focused on the efficiency improvements and retrofitting to maximize plant electrical output. This study however presents the CFB load change improvement possibilities achieved with supplementary GT heat. The repowering study is prefaced with literature and theory review for both of the processes to maximize accuracy of the research. Both dynamic and steady-state simulations accomplished with APROS simulation tool will be used to evaluate repowering effects to the CFB unit operation. Eventually, a conceptual level analysis is completed to compare repowered plant performance to the state-of-the-art CFB performance. Based on the performed simulations, considerably good improvements to the CFB process parameters are achieved with repowering. Consequently, the results show possibilities to higher ramp rate values achieved with repowered CFB technology. This enables better plant suitability to the grid balance markets.
Resumo:
Hyvinkään Sahanmäen teollisuusalueella tarkastellaan mahdollisuutta hyödyntää Saint Gobain Isoverin lasivillatehtaalla syntyvää ylijäämälämpöä alueen yritysten lämmittämiseen. Hukkalämpöä on tarkoitus ottaa talteen lauhduttamalla savukaasuihin sitoutunutta vesihöyryä ja siirtää lauhtumisessa vapautuva lämpö matalalämpötilaiseen verkkoon, Energiaväylään. Verkkoon liittyviin kohteisiin asennetaan lämpöpumput, joiden avulla kohteet hyödyntävät verkosta saatavaa lämpöä. Työssä lasketaan Energiaväylästä potentiaalisesti saatava lämpöteho ja sen riittävyys asiakkaille. Lasketaan myös lämpö- ja painehäviöt sekä pumppauskustannukset. Lisäksi määritetään verkkoon liittyvien yritysten saavuttamat kustannussäästöt perustuen niiden lämpöenergiankulutukseen, sekä hankkeen kokonaiskannattavuus. Työ ei kuvaa todellista tilannetta tarkasti, vaan perustuu lukuisiin oletuksiin ja arvioihin. Työn tuloksia voidaan hyödyntää kannattavuuden arvioinnissa, mutta niiden perusteella ei voida tehdä investointipäätöksiä. Tehtyjen oletuksien perusteella kohteet saavuttaisivat yhteensä noin 1,22 milj. euron vuosittaiset säästöt vaihtamalla maakaasulämmityksen Energiaväylään. Hanke on mahdollisesti kannattava viiden vuoden takaisinmaksuajalla. Kannattavuus riippuu kuitenkin oleellisesti lämpöpumppujen asennuskustannuksista, jotka tulee arvioida erikseen kullekin kohteelle.