907 resultados para household energy consumption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle Pollution (PM) is a major problem in urban environments. There is serious health risks associated with exposure to PM. In addition, particulate matter also contributes to greenhouse effects and global warming. PM originates mainly from fuel combustion. In this paper, we attempt to study household energy use contributions to experienced levels of PM concentrations. We find that there is a strong positive association between household gasoline consumption and urban air pollution. Residential natural gas use is also associated with poor air quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis critically analyzes the micro level issues that influence the rural household energy behavior in Kerala. The aim of the study is to examine the energy consumption pattern at the household level in rural Kerala and to assess the variations in rural household energy consumption pattern across geo-climatic and socio-economic clusters. The researcher assess the attitudes of the rural households towards energy sources, uses and devices. The study tries to identify the factors influencing the adoption of energy conservation practices and shift to the improved energy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the paper is to identify the added value from using general equilibrium techniques to consider the economy-wide impacts of increased efficiency in household energy use. We take as an illustrative case study the effect of a 5% improvement in household energy efficiency on the UK economy. This impact is measured through simulations that use models that have increasing degrees of endogeneity but are calibrated on a common data set. That is to say, we calculate rebound effects for models that progress from the most basic partial equilibrium approach to a fully specified general equilibrium treatment. The size of the rebound effect on total energy use depends upon: the elasticity of substitution of energy in household consumption; the energy intensity of the different elements of household consumption demand; and the impact of changes in income, economic activity and relative prices. A general equilibrium model is required to capture these final three impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As low carbon technologies become more pervasive, distribution network operators are looking to support the expected changes in the demands on the low voltage networks through the smarter control of storage devices. Accurate forecasts of demand at the single household-level, or of small aggregations of households, can improve the peak demand reduction brought about through such devices by helping to plan the appropriate charging and discharging cycles. However, before such methods can be developed, validation measures are required which can assess the accuracy and usefulness of forecasts of volatile and noisy household-level demand. In this paper we introduce a new forecast verification error measure that reduces the so called “double penalty” effect, incurred by forecasts whose features are displaced in space or time, compared to traditional point-wise metrics, such as Mean Absolute Error and p-norms in general. The measure that we propose is based on finding a restricted permutation of the original forecast that minimises the point wise error, according to a given metric. We illustrate the advantages of our error measure using half-hourly domestic household electrical energy usage data recorded by smart meters and discuss the effect of the permutation restriction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study proposes the development of thermal and energy consumption maps to generate useful planning information. A residential neighbourhood in a medium-sized city was selected as the study area. In this area, 40 points were taken as urban reference points where air temperatures at the pedestrian level were collected. At the same time, rural temperatures made available by the city meteorological station were registered. Data of electrical energy consumption of the building units (houses and apartments) were collected through a household survey that was also designed to identify the users' income levels. Then, maps were developed so that the configuration of urban heat islands and electrical energy consumption could be visualised, compared and analysed. The results showed that the income level was the most important variable influencing electrical energy consumption. However, a strong relationship of the consumption with the thermal environment was also observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global warming due to high CO2 emission in the last years has made energy saving a global problem nowadays. However, manufacturing processes such as pultrusion necessarily needs heat for curing the resin. Then, the only option available is to apply all efforts to make the process even more efficient. Different heating systems have been used on pultrusion, however, the most widely used are the planar resistances. The main objective of this study is to develop another heating system and compares it with the former one. Thermography was used in spite of define the temperature profile along the die. FEA (finite element analysis) allows to understand how many energy is spend with the initial heating system. After this first approach, changes were done on the die in order to test the new heating system and to check possible quality problems on the product. Thus, this work allows to conclude that with the new heating system a significant reduction in the setup time is now possible and an energy reduction of about 57% was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we analyze the determination of "key" sectors in the final energy consumption. We approach this issue from an input-output perspective and we design a methodology based on the elasticities of the demands of final energy consumption. As an exercise, we apply the proposed methodology to the Spanish economy. The analysis allows us to indicate the greater or lesser relevance of the different sectors in the consumption of final energy, pointing out which sectors deserve greater attention in the Spanish case and showing the implications for energy policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the role of the energy transformation index and of final energy consumption per GDP unit in the disparities in energy intensity across countries. In that vein, we use a Theil decomposition approach to analyze global primary energy intensity inequality as well as inequality across different regions of the world and inequality within these regions. The paper first demonstrates the pre-eminence of divergence in final energy consumption per GDP unit in explaining global primary energy intensity inequality and its evolution during the 1971-2006 period. Secondly, it shows the lower (albeit non negligible) impact of the transformation index in global primary energy inequality. Thirdly, the relevance of regions as unit of analysis in studying crosscountry energy intensity inequality and their explanatory factors is highlighted. And finally, how regions around the world differ as to the relevance of the energy transformation index in explaining primary energy intensity inequality.