1000 resultados para hot torsion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of the evolution of the microstructure and crystallographic texture during free end torsion of a single phase magnesium alloy Mg-3Al-0.3Mn (AM30) was carried out. The torsion tests were done at a temperature of 250 degrees C to different strain levels in order to examine the progressive evolution of the microstructure and texture. A detailed microstructural analysis was performed using the electron back-scattered diffraction technique. The observed microstructural features indicated the occurrence of continuous dynamic recovery and recrystallization, starting with the formation of subgrains and ending with recrystallized grains with high angle boundaries. Texture and microstructure evolution were analysed by decoupling the effects of imposed shear and of dynamic recrystallization. Microstructure was partitioned to separate the deformed grains from the recovered/recrystallized grains. The texture of the deformed part could be reproduced by viscoplastic self-consistent polycrystal simulations. Recovered/recrystallized grains were formed as a result of rotation of these grains so as to reach a low plastic energy state. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallographic rotation field for deformation in torsion is such that it is possible for orientations close to stable orientations to rotate away from the stable orientation. A Taylor type model was used to demonstrate that this phenomenon has the potential to transform randomly generated low-angle boundaries into high-angle boundaries. After imposing an equivalent strain of 1.2, up to 40% of the simulated boundaries displayed a disorientation in excess of 15°. These high-angle boundaries were characterised by a disorientation axis close to parallel with the sample radial direction. A series of hot torsion tests was carried out on 1050 aluminium to seek evidence for boundaries formed by this mechanism. A number of deformation-induced high-angle boundaries were identified. Many of these boundaries showed disorientation axes and rotation senses similar to those seen in the simulations. Between 10% and 25% of all the high-angle boundary present in samples twisted to equivalent strains between 2 and 7 could be attributed to the present mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plain carbon steel was deformed using a hot torsion deformation simulator. A schedule known to produce strain-induced ferrite was used with the strain interrupted for increasing intervals of time to determine the effect of an isothermal hold on the final microstructure. Microscopy and electron back-scattered diffraction (EBSD) were used to analyse the changes that occurred in the partially transformed microstructure during the hold and the subsequent applied strain. The strain-induced ferrite coarsened during the hold and this coarsened ferrite was refined during the second deformation. These results were compared to those obtained for a different plain carbon steel deformed in single pass rolling close to the Ar3 temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A C–Mn–V steel was used to study ultrafine ferrite formation (1–3 μm) through dynamic strain-induced transformation (DSIT) using hot torsion experiments. A systematic study determined the critical strain for the start of DSIT (C,DSIT), although this may not lead to a fully ultrafine microstructure. Therefore, the strain to produce an ultrafine ferrite (UFF) as final microstructure (C,UFF) during deformation was also determined. In addition, the effect of thermomechanical parameters such as deformation temperature, prior austenite grain size, strain rate and cooling rate on C,DSIT and C,UFF has been evaluated. DSIT ferrite nucleated on prior austenite grain boundaries at an early stage of straining followed by intragranular nucleation at higher strains. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary and intragranular ferrite grains during post-deformation cooling. Also, C,DSIT and C,UFF increased with an increase in the prior austenite grain size and deformation temperature. The post-deformation cooling had a strong effect not only on C,UFF but also the UFF microstructure (i.e. final ferrite grain size and second phase characteristics).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine grain sizes were produced using hot torsion testing of a 0.11C-1.68Mn-0.20Si (wt-%) steel, with ultrafine ferrite (<1 µm) nucleating intragranularly during testing by dynamic strain induced transformation. A systematic study was made of the effect of isothermal deformation temperature, strain level, strain rate, and accelerated cooling during deformation on the formation of ultrafine ferrite by this process. Decreasing the isothermal testing temperature below the Ae3 temperature led to a greater driving force for ferrite nucleation and thus more extensive nucleation during testing; the formation of Widmanstätten ferrite prior to, or early during, deformation imposed a lower temperature limit. Increasing the strain above that where ferrite first began 0.8 at 675C and a strain rate of 3 s¯1 increased the intragranular nucleation of ferrite. Strain rate appeared to have little effect on the amount of ferrite formed. However, slower strain rates led to extensive polygonisation of the ferrite formed because more time was available for ferrite recovery. Accelerated cooling during deformation followed by air cooling to room temperature led to a uniform microstructure consisting of very fine ferrite grains and fine spherical carbides located in the grain boundaries regions. Air cooling after isothermal testing led to carbide bands and a larger ferrite grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine ferrite grain sizes were produced in a 0.11C-1.6Mn-0.2Si steel by torsion testing isothermally at 675 °C after air cooling from 1250 °C. The ferrite was observed to form intragranularly beyond a von Mises equivalent tensile strain of approximately 0.7 to 0.8 and the number fraction of intragranular ferrite grains continued to increase as the strain level increased. Ferrite nucleated to form parallel and closely spaced linear arrays or “rafts” of many discrete ultrafine ferrite grains. It is shown that ferrite nucleates during deformation on defects developed within the austenite parallel to the macroscopic shear direction (i.e., dynamic strain-induced transformation). A model austenitic Ni-30Fe alloy was used to study the substructure developed in the austenite under similar test conditions as that used to induce intragranular ferrite in the steel. It is shown that the most prevalent features developed during testing are microbands. It is proposed that high-energy jogged regions surrounding intersecting microbands provide potential sites for ferrite nucleation at lower strains, while at higher strains, the walls of the microbands may also act as nucleation sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of Fields and Backofen has been commonly used to reduce the data obtained by hot torsion test into flow curves. The method, however, is most suitable for materials with monotonic strain hardening behaviour. Other methods such as Stüwe’s method, tubular specimens, differential testing and the inverse method, each suffer from similar drawbacks. It is shown in the current work that for materials with multiple regimes of hardening any method based on an assumption of constant hardening indices introduces some errors into the flow curve obtained from the hot torsion test. Therefore such methods do not enable accurate prediction of onset of recrystallisation where slow softening occurs. A new method to convert results from the hot torsion test into flow curves by taking into account the variation of constitutive parameters during deformation is presented. The method represents the torque twist data by a parametric linear least square model in which Euler and hyperbolic coefficients are used as the parameters. A closed form relationship obtained from the mathematical representation of the data is employed next for flow stress determination. Two different solution strategies, the method of normal equations and singular value decomposition, were used for parametric modelling of the data with hyperbolic basis functions. The performance of both methods is compared. Experimental data obtained by FHTTM, a flexible hot torsion test machine developed at IROST, for a C–Mn austenitic steel was used to demonstrate the method. The results were compared with those obtained using constant strain and strain rate hardening characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of grain size on the warm deformation behaviour of a titanium stabilized interstitial free steel was investigated using hot torsion. Tests were performed at temperatures between 765 °C and 850 °C at strain rates between 0.003 s−1 and 1 s−1 for samples with grain sizes of 25 μm, 75 μm and 150 μm. The structures were observed using EBSD analysis and are consistent with those expected for materials dominated by dynamic recovery. Some evidence was found for small amounts of thermally induced migration of pre-existing boundary (bulging) and for the generation of new segments of high angle boundaries by continuous dynamic recrystallization. The early onset of a steady-state flow stress in the finer grained samples is attributed to one or a combination of thermally induced boundary migration and enhanced rates of recovery near subgrain (and grain) boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present work was to undertake a detailed investigation of the softening mechanisms during hot deformation of a 21Cr-10Ni-3Mo (steel A) and a 21Cr-8Ni-3Mo (steel B) austenite/ferrite duplex stainless steels containing about 60% and 30% of austenite, respectively. The steels were subjected to hot deformation in torsion performed at 900 ºC and 1200 ºC using a strain rate of 0.7 s-1 to several strain levels. Quantitative optical and transmission electron microscopy were used in the investigation. Austenite was observed to soften via dynamic recovery (DRV) and dynamic recrystallisation (DRX) accompanied by DRV for the deformation temperatures of 900 °C and 1200 °C, respectively, for the both steels studied. DRX of austenite largely occurred through strain-induced grain boundary migration, complemented by (multiple) twinning, and developed significantly faster in steel A than in steel B, indicating that considerably larger strains partitioned into austenite in the former steel during deformation at 1200 °C. The above softening mechanism was accompanied by the formation of DRX grains from subgrains along the austenite/ferrite interface and by large-scale subgrain coalescence. At 900°C, stressassisted phase transitions between austenite and ferrite were observed, characterised by dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the microstructure with increasing strain. These processes appeared to be significantly more widespread in steel B. The softening mechanism within ferrite for the both steels studied was classified as “continuous DRX”, characterised by a gradual increase in misorientations between neighbouring subgrains with strain, for the both deformation temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of "model selection" for expressing a wide range of constitutive behaviour adequately using hot torsion test data was considered here using a heuristic approach. A model library including several nested parametric linear and non-linear models was considered and applied to a set of hot torsion test data for API-X 70 micro-alloyed steel with a range of strain rates and temperatures. A cost function comprising the modelled hot strength data and that of the measured data were utilized in a heuristic model selection scheme to identify the optimum models. It was shown that a non-linear rational model including ten parameters is an optimum model that can accurately express the multiple regimes of hardening and softening for the entire range of the experiment. The parameters for the optimum model were estimated and used for determining variations of hot strength of the samples with deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model selection scheme was extended to a multi-dimensional representation of the hot torsion test torque, twist and twist rate data to calculate partial derivatives of the torque data with respect to twist and twist rate. These enabled calculation of the instantaneous strain and strain rate hardening indices in the Fields and Backofen method. The concept of an iso-parametric shape function has been borrowed from the finite element method for adding twist rate as a dependant variable to the torque-twist models identified by the model selection scheme. Expressions to calculate the hardening indices, when employing a rational model of torsion data, were derived and presented. Subsequently, the models were used for post processing the data and determining hot strength behaviour, taking into account variations of strain and strain rate hardening indices during the deformation. To substantiate the technique, the hot flow behaviour of API-X70 micro-alloyed steel was determined using a range of hot torsion test data for the material. The flow stress obtained using the instantaneous hardening indices were compared with that obtained by the orthodox technique. For the investigated cases, the onset of dynamic recrystallization (DRX) predicted by the presented technique deviated considerably from those obtained when the average indices were used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work examines the microstructure and texture evolution in a Ni-30wt.%Fe austenitic model alloy deformed in torsion at 1000 °C, with a particular emphasis on the orientation dependence of the substructure characteristics within the deformed original grains. Texture of these grains was principally consistent with that expected for simple shear and comprised the main A, B and C components. The deformation substructure within the main texture component grains was characterised by "organised" arrays of parallel microbands with systematically alternating misorientations, locally accompanied by micro-shear bands within the C grains. With increasing strain, the mean subgrain size gradually decreased and the mean misorientation angle concurrently increased towards the saturation. The stored deformation energy within the main texture component grains was principally consistent with the respective Taylor factor values. The microband boundaries corresponded to the expected single slip {111} plane for the A oriented grains while these boundaries for the C oriented grains represented a variety of planes even for a single grain.