845 resultados para hot nuclei
Resumo:
The reduced velocity correlation functions of the Intermediate Mass Fragments (IMFs) were measured in the reactions of Ar-36+ Sn-112,Sn-124 at 35MeV/u. The anti-correlation at small reduced velocities is more pronounced in Ar-36+ Sn-124 system than that in Ar-36+ Sn-112 system. The difference of the correlation functions between the two reactions is mainly contributed by the particle pairs with high momenta. A three-body Coulomb repulsive trajectory code (MENEKA) is employed to calculate the emission time scale of IMFs for-the both systems. The time scale is 150fm/c in the Ar-36+ Sn-112 system and 120fm/c in the Ar-36+ Sn-124 system, respectively. A calculation based on an Isospin dependence Quantum Molecular Dynamics code (IQMD) reveals that the emission time spectrum of IMFs is shifted slightly leftwards in Ar-36+ Sn-124 compared with that in the Ar-16+ Sn-112 system, indicating a shorter emission time scale. Correspondingly, the central density of the hot nuclei decreases faster in Ar-36+ Sn-124 than in Ar-36+ Sn-112
Resumo:
针对①中能反应中同位旋自由度是否达到平衡,②同位旋自由度对几中不同方法测量的核温度是否有影响 这两个基本问题,设计了用30和35MeV/u ~(36,40)Ar轰击~(112,124)Sn反应的实验方案。得到如下结果:对于前角5°处的耗散弹核碎裂产物,丰中子同位素与稳定核的产额比随产物出射动能的增加而减小,而丰质子子同位素与稳定核的产额比随动能的增加而增加,呈现明显的剪刀差分布特性。随耗散时间的增大,产物的平均中质比逐渐由弹核的平均中质比向系统的平均中质比过渡。这个结果说明在该反应中,同位旋自由度没有达到完全平衡。而对于20°处的DIC产物,上述剪刀差分布特性变得更不明显,这是同位旋自由度由非平衡向平衡过渡的表现。后角轻粒子的能谱分析表明,初始热核的同位旋会影响斜率核温度的提取,由于丰中子轻粒子~6He在~(40)Ar + ~(112)Sn系统中的蒸发被抑制,相比~(40)Ar + ~(112)Sn而言,其蒸发比较容易发生在衰变链早期,因此提取的温度偏高,同样,丰质子轻粒子~3He的温度在~(40)Ar + ~(112)Sn中略高。但中后角的同位素产额分析表明,反应系统的同位旋对双同位素比核温度几乎没有影响。核温度作为热核的热力学量,是独立于测量方法的,这种不同的方法得出的差异主要来源于同位旋对衰变机制的影响。作为一个尝试,将中高能反应中的熵的提取推广到这个能区,发现两个系统的熵几乎一致。在量子统计模型框架下,考察核温度与熵的关系发现,~(40)Ar + ~(112)Sn反应的挤出时刻密度略高于~(40)Ar + ~(112)Sn。
Resumo:
中能重离子碰撞中的核反应机制及其形成的高激发热核的性质是中能重离子物理研究的重要领域,而高激发热核性质的同位旋效应研究是这一领域的热点之一。选取了具有不同N亿比的反应体系以研究激发热核性质的同位旋效应。本论文涉及的反应系统三对共六个反应体系:55MeV/u~(40)Ar+~(58.64)Ni、30MeV/u~(40)Ar+~(112,124)Sn、35Mev/u~(36)Ar+~(112,124)Sn,这六个反应体系的N/z比分别为1.13,1.26、1.24,1.41、1.18,1.35。分别从带电粒子多重性、相对态布居核温度、关联函数等角度研究了这三对反应体系高激发热核性质的同位旋效应。在55MeV/u 40Ar+58,64Ni核反应中,用兰州4π带电粒子探测器阵列测量带电粒子多重性,研究了He和中等质量碎片的产额与反应系统的同位旋的关系,以及这种同位旋效应与反应系统的碰撞参数(即碰撞的激烈程度)、系统的激发能的变化关系。对两个反应系统,观察到带电粒子多重性中He的比分随带电粒子多重性的增加而增大,带电粒子多重性中IMF的比分随带电粒子多重性的增加而先增大,后减小的规律。两个反应系统虽然具有相同的核电荷数,但轻粒子He和中等质量碎片在多重性中的比分有明显的同位旋相关性。在30Mev/u40Sn、35MeV/u~(40)Ar~(112,124)Sn、35Mev/u 36Ar+112,124Sn反应中用13单元望远镜探测器阵列测量了小角关联粒子。由价a关联函数提取了30Mev/u 40Ar+112,12Sn反应系统中激发热核的态布居核温。对于不同同位旋反应系统舜UAr+112Sn和4VAr+124Sn,提取的相对杰布居核温度分别是4.18+0.28/0.21MEV和4.10士0.22/0.20MeV;考察态布居核温度和粒子能量的关薰时,观察到两个系统的发射温度均随着粒子能量的增加而降低,缺中子系统40Ar+l12Sn中由低能时的5.13士.30/0.26MEV降低到高能时的3.87士0.37/0.29MeV,丰中子系统40Ar+124Sn中由低能时的5.39士0.30/0.26MeV降低到高能时的3.32士MeV。讨论了这种布居态核温度的同位旋相关性。在35Mev/u 36Ar+112,124Sn反应中提取了洲F(3‘25)的约化速度关联函数。相对丰中子36Ar+124Sn系统的IMF关联函数在小约化速度处反关联程度更强,表明36Ai+124Sn系统的发射IMF的平均时间更短。用MENEKA程序提取了两个系统IMF的平均发射时间,36Ai+112sn反应中IMF的发射时间约为150fm/c,而36Ar十124Sn反应IME的发射时间稍短,约为120fm/c。以关联IMF的单核子总能量/动量为窗条件,发现低能IMF关联函数几乎没有差别,而高能IMF关联函数在小约化速度处的差别更为明显,表明两个系统IMF关联函数的同位旋效应可能来自于IMF的早期发射。为了得到进一步的信息,我们提取了高动量窗条件下的IMF发射时间,它们比平均发射时间短,36Ar+112Sn反应中高能IMF的发射时间约为100蒯c,而36Ai+124Sn反应中IMF的发射时间则更短,约为50fm/c。
Resumo:
本研究利用PPAC和11组#diamond open#E-E望远镜对25MeV/u ~(40)Ar+~(108)Ag反应中的裂变碎片和轻带粒子联测量。用得到的裂变碎片角关联来确定系统的线性动量转移(LMT)。将符合测量得到的对应于不同
Resumo:
The dinuclear model of the formation mechanism of a superheavy compound nucleus assumes that when all nucleons of the projectile have been transferred in to the target nucleus the compound nucleus is formed. The nucleon transfer is determined by the driving potential. For some reaction channels, the relation between nucleon transfer and the evolution path of the neutron/proton ratio is rather complicated. In principle, both the dynamical equation and the driving potential should be a twodimensional explicit function of the neutron and proton. For the sake of simplicity we calculated the driving potential by choosing the path of the nucleon transfer which is related to the nutron/proton ratio, and the calculated evaporation residue cross-sections to synthesize the superheavy nuclei are much closer to the experimental data
Resumo:
The dinuclear system model has been further developed by introducing the barrier distribution function method in the process of heavy-ion capture and fusion to synthesize superheavy nuclei. The capture of two colliding nuclei, formation and de-excitation process of compound nucleus are decribed by using empirical coupled channel model, solving master equation numerically and statistical evaporation model, respectively. Within the framework of the dinuclear system model, the fusion-evaporation excitation functions of the systems Ca-48(Am-243, 3n-5n) (288-286)115 and Ca-48(Cm-248, 3n-5n)(293-291)116 are calculated, which are used for synthesizing new superheavy nuclei at Dubna in recent years. Isotopic dependence of production cross sections with double magic nucleus Ca-48 bombarding actinide targets U, Np, Pu, Am, Cm to synthesize superheavy nuclei with charged numbers Z=112-116 is analyzed systematically. Based on these analysis, the optimal projectile-target combination and the optimal excitation energy are proposed. It is shown that shell correction energy and neutron separation energy will play an important role on the isotopic dependence of production cross sections of superheavy nuclei.
Resumo:
Recent X-ray observations have revealed that early-type galaxies (which usually produce extended double radio sources) generally have hot gaseous haloes extending up to approx102kpc1,2. Moreover, much of the cosmic X-ray background radiation is probably due to a hotter, but extremely tenuous, intergalactic medium (IGM)3. We have presented4–7 an analytical model for the propagation of relativistic beams from galactic nuclei, in which the beams' crossing of the pressure-matched interface between the IGM and the gaseous halo, plays an important role. The hotspots at the ends of the beams fade quickly when their advance becomes subsonic with respect to the IGM. This model has successfully predicted (for typical double radio sources) the observed8 current mean linear-size (approx2Dsime350 kpc)4,5, the observed8–11 decrease in linear-size with cosmological redshift4–6 and the slope of the linear-size versus radio luminosity10,12–14 relation6. We have also been able to predict the redshift-dependence of observed numbers and radio luminosities of giant radio galaxies7,15. Here, we extend this model to include the propagation of somewhat weaker beams. We show that the observed flattening of the local radio luminosity function (LRLF)16–20 for radio luminosity Papproximately 1024 W Hz-1 at 1 GHz can be explained without invoking ad hoc a corresponding break in the beam power function Phi(Lb), because the heads of the beams with Lb < 1025 W Hz-1 are decelerated to sonic velocity within the halo itself, which leads to a rapid decay of radio luminosity and a reduced contribution of these intrinsically weaker sources to the observed LRLF.
Resumo:
A master equation is constructed to treat the nucleon transfer process in heavy ion fusion reactions to form superheavy nucleus. The relative motion concerning the energy, the angular momentum and the fragment deformation relaxations is explicitly treated to couple with the diffusion process. The nucleon transition probabilities, which are derived microscopically, are thus time dependent. The calculated evaporation residue cross-sections for both cold and hot fusion are in good agreement with the known experimental data.
Resumo:
The propagation of acoustic nonlinear excitations in an electron-positron-ion (e-p-i) plasma composed of warm electrons and positrons, as well as hot ions, has been investigated by adopting a two-dimensional cylindrical geometry. The electrons and positrons are modeled by hydrodynamic fluid equations, while the ions are assumed to follow a temperature-parametrized Boltzmann distribution (the fixed ion model is recovered in the appropriate limit). This situation applies in the accretion disk near a black hole in active galactic nuclei, where the ion temperature may be as high as 3 to 300 times that of the electrons. Using a reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation is derived and its exact soliton solutions are presented. Furthermore, real situations in which the strength of the nonlinearity may be weak are considered, so that higher-order nonlinearity plays an important role. Accordingly, an extended cylindrical Kadomtsev-Petviashvili equation is derived, which admits both soliton and double-layer solutions. The characteristics of the nonlinear excitations obtained are investigated in detail
Resumo:
Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.