977 resultados para hose pump
Resumo:
The aim of this thesis was to research how slurry’s viscosity and rheology affect to pumping in peristaltic hose pump and in eccentric progressive cavity pump. In addition, it was researched the formed pressure pulsation in hose pump. Pressure pulsation was studied by pumping different slurries and by using different pipe materials. Pressure and power curves were determined for both used pumps. It was also determined NPSHR curve for the progressive cavity pump. Literature part of the thesis considered to distribute fluids to different rheology types, as well as theories and models to identify different rheology types. Special attention was paid to non-Newtonian fluids, which were also used in experimental part of this thesis. In addition, the literature part discusses about pumps, parameters for pump sizing, and pressure pulsation in hose pump. Starch, bentonite, and carboxymethyl cellulose slurries were used in the experimental part of this thesis. The slurries were pumped with Flowrox peristaltic hose pump (LPP-T32) and eccentric progressive cavity pump (C10/10). From the each slurry was taken a sample, and the samples were analyzed for concentration, viscosity and rheology type. The used pipe materials in pressure pulsation experiments were steel and elastic, and it was also used a prototype of pulsation dampener. The pulsation experiments indicated that the elastic pipe and the prototype of pulsation dampener attenuated pressure pulsation better than the steel pipe at low pressure levels. The differences between different materials disappeared when pressure level and pump rotation speed increased. In slurry experiments, pulsation was different depending on rheology and viscosity of the slurry. According to experiments, the rheology did not significantly affect to pump power consumption or efficiency.
Resumo:
Two 7-day mesocosm experiments were conducted in October 2012 at the Instituto Nacional de Desenvolvimento das Pescas (INDP), Mindelo, Cape Verde. Surface water was collected at night before the start of the respective experiment with RV Islândia south of São Vicente (16°44.4'N, 25°09.4'W) and transported to shore using four 600L food safe intermediate bulk containers. Sixteen mesocosm bags were distributed in four flow-through water baths and shaded with blue, transparent lids to approximately 20% of surface irradiation. Mesocosm bags were filled from the containers by gravity, using a submerged hose to minimize bubbles. The accurate volume inside the individual bags was calculated after addition of 1.5 mmol silicate and measuring the resulting silicate concentration. The volume ranged from 105.5 to 145 L. The experimental manipulation comprised addition of different amounts of inorganic N and P. In the first experiment, the P supply was changed at constant N supply in thirteen of the sixteen units, while in the second experiment the N supply was changed at constant P supply in twelve of the sixteen units. In addition to this, "cornerpoints" were chosen that were repeated during both experiments. Four cornerpoints should have been repeated, but setting the nutrient levels in one mesocosm was not succesfull and therefore this mesocosm also was set at the center point conditions. Experimental treatments were evenly distributed between the four water baths. Initial sampling of the mesocosms on day 1 of each run was conducted between 9:45 and 11:30. After nutrient manipulation, sampling was conducted on a daily basis between 09:00 and 10:30 for days 2 to 8.
Resumo:
Flow pumps are important tools in several engineering areas, such as in the fields of bioengineering and thermal management solutions for electronic devices. Nowadays, many of the new flow pump principles are based on the use of piezoelectric actuators, which present some advantages such as miniaturization potential and lower noise generation. In previous work, authors presented a study of a novel pump configuration based on placing an oscillating bimorph piezoelectric actuator in water to generate flow. It was concluded that this oscillatory behavior (such as fish swimming) yields vortex interaction, generating flow rate due to the action and reaction principle. Thus, following this idea the objective of this work is to explore this oscillatory principle by studying the interaction among generated vortex from two bimorph piezoelectric actuators oscillating inside the same pump channel, which is similar to the interaction of vortex generated by frontal fish and posterior ones when they swim together in a group formation. It is shown that parallel-series configurations of bimorph piezoelectric actuators inside the same pump channel provide higher flow rates and pressure for liquid pumping than simple parallel-series arrangements of corresponding single piezoelectric pumps, respectively. The scope of this work includes structural simulations of bimorph piezoelectric actuators, fluid flow simulations, and prototype construction for result validation.
Resumo:
Flow pumps have been developed for classical applications in Engineering, and are important instruments in areas such as Biology and Medicine. Among applications for this kind of device we notice blood pump and chemical reagents dosage in Bioengineering. Furthermore, they have recently emerged as a viable thermal management solution for cooling applications in small-scale electronic devices. This work presents the performance study of a novel principle of a piezoelectric flow pump which is based oil the use of a bimorph piezoelectric actuator inserted in fluid (water). Piezoelectric actuators have some advantages over classical devices, such as lower noise generation and ease of miniaturization. The main objective is the characterization of this piezoelectric pump principle through computational simulations (using finite element software), and experimental tests through a manufactured prototype. Computational data, Such as flow rate and pressure curves, have also been compared with experimental results for validation purposes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the development of a ventricular assist device, computational fluid dynamics (CFD) analysis is an efficient tool to obtain the best design before making the final prototype. In this study, different designs of a centrifugal blood pump were developed to investigate flow characteristics and performance. This study assumed the blood flow as being an incompressible homogeneous Newtonian fluid. A constant velocity was applied at the inlet; no slip boundary conditions were applied at device wall; and pressure boundary conditions were applied at the outlet. The CFD code used in this work was based on the finite volume method. In the future, the results of CFD analysis can be compared with flow visualization and hemolysis tests.
Resumo:
This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.
Resumo:
Significant progress has been achieved in elucidating the role of the plasma membrane Ca2+-ATPase in cellular Ca2+ homeostasis and physiology since the enzyme was first purified and physiology since the enzyme was first purified and cloned a number of years ago. The simple notion that the PM Ca2+-ATPase controls resting levels of [Ca2+](CYT) has been challenged by the complexity arising from the finding of four major isoforms and splice variants of the Ca2+ pump, and the finding that these are differentially localized in various organs and subcellular regions. Furthermore, the isoforms exhibit differential sensitivities to Ca2+, calmodulin, ATP, and kinase-mediated phosphorylation. The latter pathways of regulation can give rise to activation or inhibition of the Ca2+ pump activity, depending on the kinase and the particular Ca2+ pump isoform. Significant progress is being made in elucidating subtle and more profound roles of the PM Ca2+-ATPase in the control of cellular function. Further understanding of these roles awaits new studies in both transfected cells and intact organelles, a process that will be greatly aided by the development of new and selective Ca2+ pump inhibitors. (C) 1999 Elsevier Science Inc.
Resumo:
We have observed previously that Ca2+ pump-mediated Ca2+ efflux is elevated in cultured aortic smooth muscle cells from spontaneously hypertensive rats compared to those from Wistar-Kyoto rat controls. The objective of this work was to determine if these strains differ in mRNA levels for the PMCA1 isoform of the plasma membrane Ca2+-ATPase and the SERCA2 isoform of the sarcoplasmic reticulum Ca2+-ATPase. mRNA levels were compared in cultured aortic smooth muscle cells from 10-week-old male rats. PMCA1 and SERCA2 mRNA levels were elevated in SHR compared to WKY. Angiotensin II increased the level of PMCA1 and SERCA2 mRNA in both strains. These studies provide further evidence for alterered Ca2+ homeostasis in hypertension at the level of Ca2+ transporting ATPases in the spontaneously hypertensive rat model. These data are also consistent with the hypothesis that the expression of these two Ca2+ pumps may be linked. (C) 1997 Academic Press
Resumo:
Background-Coronary artery bypass graft surgery with cardiopulmonary bypass is a safe, routine procedure. Nevertheless, significant morbidity remains, mostly because of the body`s response to the nonphysiological nature of cardiopulmonary bypass. Few data are available on the effects of off-pump coronary artery bypass graft surgery (OPCAB) on cardiac events and long-term clinical outcomes. Methods and Results-In a single-center randomized trial, 308 patients undergoing coronary artery bypass graft surgery were randomly assigned: 155 to OPCAB and 153 to on-pump CAB (ONCAB). Primary composite end points were death, myocardial infarction, further revascularization (surgery or angioplasty), or stroke. After 5-year follow-up, the primary composite end point was not different between groups (hazard ratio 0.71, 95% CI 0.41 to 1.22; P=0.21). A statistical difference was found between OPCAB and ONCAB groups in the duration of surgery (240 +/- 65 versus 300 +/- 87.5 minutes; P<0.001), in the length of ICU stay (19.5 +/- 17.8 versus 43 +/- 17.0 hours; P<0.001), time to extubation (4.6 +/- 6.8 versus 9.3 +/- 5.7 hours; P<0.001), hospital stay (6 +/- 2 versus 9 +/- 2 days; P<0.001), higher incidence of atrial fibrillation (35 versus 4% of patients; P<0.001), and blood requirements (31 versus 61% of patients; P<0.001), respectively. The number of grafts per patient was higher in the ONCAB than the OPCAB group (2.97 versus 2.49 grafts/patient; P<0.001). Conclusions-No difference was found between groups in the primary composite end point at 5-years follow-up. Although OPCAB surgery was related to a lower number of grafts and higher episodes of atrial fibrillation, it had no significant implications related to long-term outcomes.
Resumo:
Chinese-style dried, shredded meat is traditionally prepared by sequential cooking, shredding, pre-drying, and final drying (roasting) of lean meat. In this study, shredded dried beef (a(w)<0.6) was prepared by omitting roasting but prolonging pre-drying. Sensory scores of the modified product were lower than those for the traditional product. When heat pump drying replaced traditional oven drying, drying time was shortened without significant difference in quality attributes. Desorption curves were established for shredded beef at several drying temperatures.
Resumo:
Objective To delineate the effects of extracorporeal bypass on biomarkers of hemostasis, fibrinolysis, and inflammation and clinical sequelae. Methods Patients were assigned prospectively and randomly to either on-pump (n=41) or off-pump (n=51) coronary bypass surgery. The concentrations of C-reactive protein, fibrinogen, D-dimer, and plasminogen activator inhibitor type-1 in blood were quantified before and after (1 and 24 h) surgery. Similar surgical and anesthetic procedures were used for both groups. Clinical events were assessed during initial hospitalization and at the end of I year. Results The concentrations of plasminogen activator inhibitor type-1 and D-dimer were greater compared with preoperative values 1 and 24 h after surgery in both groups, but their concentrations increased to a greater extent 24 h after surgery in the on-pump group (P<0.01). The concentration of C-reactive protein did not change appreciably immediately after surgery in either group but increased in a parallel manner 24 h after either on-pump or off-pump surgery (P<0.01). Bypass surgery in the on-pump group was associated with greater blood loss during surgery and more bleeding after surgery (P <= 0.01). The incidence of all other complications was similar in the two groups. Conclusion On-pump surgery was associated with biochemical evidence of a prothrombotic state early after surgery but no greater incidence of thrombotic events was observed. The prothrombotic state might be a consequence of extracorporeal bypass, compensation in response to more bleeding, or both in patients undergoing on-pump surgery. Coron Artery Dis 20:100-105 (C) 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
We investigated the effects of low ouabain concentrations on systolic (SAP) and diastolic (DAP) arterial pressures and on pressor reactivity in 3-month-old male spontaneously hypertensive rats (SHR). Arterial blood pressure (BP) and pressor reactivity to phenylephrine (PHE) were investigated before and after 0.18 μg/kg ouabain administration (N = 6). The influence of hexamethonium (N = 6), canrenone (N = 6), enalapril (N = 6), and losartan (N = 6) on ouabain actions was evaluated. Ouabain increased BP (SAP: 137 ± 5.1 to 150 ± 4.7; DAP: 93.7 ± 7.7 to 116 ± 3.5 mmHg; P < 0.05) but did not change PHE pressor reactivity. Hexamethonium reduced basal BP in control but not in ouabain-treated rats. However, hexamethonium + ouabain increased DAP sensitivity to PHE. Canrenone did not affect basal BP but blocked ouabain effects on SAP. However, after canrenone + ouabain administration, DAP pressor reactivity to PHE still increased. Enalapril and losartan reduced BP and abolished SAP and DAP responses to ouabain. Enalapril + ouabain reduced DAP reactivity to PHE, while losartan + ouabain reduced SAP and DAP reactivity to PHE. In conclusion, a small dose of ouabain administered to SHR increased BP without altering PHE pressor reactivity. Although the renin-angiotensin system (RAS), Na+ pump and autonomic reflexes are involved in the effects of ouabain on PHE reactivity, central mechanisms might blunt the actions of ouabain on PHE pressor reactivity. The effect of ouabain on SAP seems to depend on the inhibition of both Na+ pump and RAS, whereas the effect on DAP seems to depend only on RAS.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores