772 resultados para home ranges
Resumo:
About 1,200 ha of hydrilla ( Hydrilla verticillata L.f. Royle) was eliminated in the Spring Creek embayment of Lake Seminole, Georgia, using a drip-delivery application of fluridone (1- methyl-3-phenyl-5-[3-(trifluoromethl) phenyl]-4(1H)-pyridinone) in 2000 and 2001. Two groups of 15 and 20 largemouth bass (Micropterus salmoides Lacepede) were implanted with 400-day radio tags in February 2000 and 2001 to determine changes in movement and behavior before and after hydrilla reduction.(PDF contains 8 pages.)
Resumo:
The ranging patterns of two male and five female spider monkeys (Ateles geoffroyi) were studied with the use of radio telemetry in Santa Rosa National Park, Costa Rica. The average size of a spider monkey home range was 62.4 hectares; however, range size varied with sex, and, for females, with the presence of a dependent infant. The probability of encountering a radio‐collared spider monkey in a three‐hour search using radio telemetry (0.91) was much greater than using a visual search (0.20), and telemetric data resulted in a larger estimate of mean home range size than did observational data, when all subjects were compared. However, the difference appeared to be owing to the presence of male ranges in the telemetric, but not the observational, data. When the size of home ranges derived from radio‐tracking data for adult females was compared to size of ranges for adult females derived from observations, the results were not significantly different. Adult males had larger home ranges than adult females, thus lending support to the hypothesis that males have adapted to the dispersion of females by occupying a large home range that overlaps the ranges of several adult females. The smallest home ranges were occupied by low‐weight females with dependent infants, perhaps reflecting social and energetic constraints. Copyright © 1988 Wiley‐Liss, Inc., A Wiley Company
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Population structure and patterns of habitat use among ringed seals (Phoca hispida) are poorly known, in part because seasonal movements have not been adequately documented. We monitored the movements of 98 ringed seals in the Beaufort and Chukchi seas between 1990 and 2006 using three forms of telemetry. In the winter—spring period (when the seals were occupying shorefast ice), we used radio and ultra-sonic tags to track movements above and below the ice, respectively. We used satellite-linked transmitters in summer and fall (when the seals ranged away from their winter sites) to track at-sea movements. In the shorefast ice habitat, the home ranges of 27 adult males ranged from\1 to 13.9 km2 (median = 0.628) while the home ranges of 28 adult females ranged from \1 to 27.9 km2 (median = 0.652). The 3-dimensional volumes used by 9 seals tracked acoustically under the ice averaged 0.07 (SD = 0.04) km3 for subadults and adult males and 0.13 (SD = 0.04) km3 for adult females. Three of the radio-tracked seals and 9 tracked by satellite ranged up to 1,800 km from their winter/spring home ranges in summer but returned to the same small (1–2 km2) sites during the ice-bound months in the following year. The restricted movements of ringed seals during the ice-bound season— including the breeding season—limits their foraging activities for most of the year and may minimize gene flow within the species.
Resumo:
The coyote (Canis latrans) is among the most studied animals in North America. Because of its adaptability and success as a predator, the coyote has flourished and is still expanding its range. Coyotes can now be found throughout most of North America and south into Central America (Voight and Berg 1987). Studies in recent years have been extensive to understand the interrelationships of prey and coyotes (Shelton and Klindt 1974, Beckoff and Wells 1981), as well as demographic relationships (Davis et al. 1975, Knowlton and Stoddart 1978, Mitchell 1979, Bowen 1981) and feeding strategies (Todd and Keith 1976, Andelt et al. 1987, MacCracken and Hansen 1987, Gese et al. 1988a). With the advance of radio telemetry, researchers have investigated lifestyle characteristics spatially with home ranges or temporally with movements in relation to habitat requirements. Researchers have studied home ranges of coyotes in various regions of the United States (Livaitis and Shaw 1980, Andelt 1981, Springer 1982, Pyrah 1984, Gese et al. 1988a) and Canada (Bowen 1982). Some studies of home range were separated by season (Ozoga and Harger 1966) or relation to nearby food sources (Danner and Smith 1980). Home range analysis in relation to social interactions of coyotes has been either neglected, overlooked, or avoided. Gese et al. (1988a) recognized a transient class of coyote by home range size. Coyote social systems are very complex and can vary by season or locality in addition to some reports of group or pack systems (Hamlin and Schweitzer 1979, Beckoff and Wells 1981, Bowen 1981, Gese et al. 1988b). Coyotes maintain communication with conspecifics through vocal and olfactory signals (Lehner 1987, Bowen and McTaggert Cowan 1980). Social interactions may be by far the most complex and least understood aspect related to coyote ecology. Coyote movements can be related to many factors including food, water, cover, and social interactions. Movements in relation to food sources are well documented (Fitch 1948, Todd and Keith 1976, Danner and Smith 1980) although reports on movements in relation to water have not been reported, probably because of limited research in desert situations. There has been some mention of coyotes' movements in relation to cover (Wells and Beckoff 1982). The objectives of this study were to delineate annual and seasonal home ranges, movements, and habitat use of coyotes in the northern Chihuahuan desert.
Resumo:
Twenty-one narwhals tagged in 2003 and 2004 in Admiralty Inlet showed a different summer distributional pattern than previous narwhal-tracking studies from Somerset Island, Eclipse Sound and Melville Bay. The migration of the narwhals tracked from Admiralty Inlet moved out through Lancaster Sound 15 days earlier (P <0.0001) than the narwhals summering around Eclipse Sound, whereas the Admiralty Inlet narwhals reached the mouths of Eclipse Sound 18 days later (P <0.0001) than the Eclipse Sound summering population. The winter range of the Admiralty Inlet narwhals overlapped with the winter range of narwhals from Melville Bay and Eclipse Sound in central southern Baffin Bay and Northern Davis Strait, but not with the winter range of narwhals from Somerset Island that wintered further north. Distribution size of range, and population size did not appear to be related. An example of considerable year to year variation between area of summer and winter distribution in the 2 years was believed to be related to the sample size and number of pods of whales tagged, rather than to differences in sex or age classes.
Resumo:
Studies that combine both the ecological responses of marine species and protection measures with movement patterns and habitat use are of major importance in order to better understand the performance of marine protected areas (MPA) and how species respond to their implementation. However, few studies have assessed MPA performance by relating local individual movement patterns and the observed reserve effects. In this study, we combined acoustic telemetry with abundance estimates to study the early effects of a recently established small coastal MPA on the local populations of white seabream. The results show that even small, recently established coastal MPAs can increase the abundance and biomass of commercial fish species, provided that target species have small home ranges and exhibit high site fidelity.
Resumo:
We investigated effects of roost loss due to clear-fell harvest on bat home range. The study took place in plantation forest, inhabited by the New Zealand long-tailed bat (Chalinolobus tuberculatus), in which trees are harvested between the ages 26-32 years. We determined home ranges by radiotracking different bats in areas that had and had not been recently clear-fell harvested. Home ranges were smaller in areas that had been harvested. Adult male bats selected 20-25 year old stands within home ranges before and after harvest. Males selected edges with open unplanted areas when harvest had not occurred but no longer selected these at proportions greater than their availability post harvest, probably because they were then readily available. This is the first radiotracking study to demonstrate a change in home range size and selection concomitant with felling of large areas of plantation forest, and thus quantify negative effects of forestry operations on this speciose group. The use of smaller home ranges post-harvest may reflect smaller colony sizes and lower roost availability, both of which may increase isolation of colonies and vulnerability to local extinction.
Resumo:
Individuals' home ranges are constrained by resource distribution and density, population size, and energetic requirements. Consequently, home ranges and habitat selection may vary between individuals of different sex and reproductive conditions. Whilst home ranges of bats are well-studied in native habitats, they are often not well understood in modified landscapes, particularly exotic plantation forests. Although Chalinolobus tuberculatus (Vespertilionidae, Chiroptera) are present in plantation forests throughout New Zealand their home ranges have only been studied in native forest and forest-agricultural mosaic and no studies of habitat selection that included males had occurred in any habitat type. Therefore, we investigated C. tuberculatus home range and habitat selection within exotic plantation forest. Home range sizes did not differ between bats of different reproductive states. Bats selected home ranges with higher proportions of relatively old forest than was available. Males selected edges with open unplanted areas within their home ranges, which females avoided. We suggest males use these edges, highly profitable foraging areas with early evening peaks in invertebrate abundance, to maintain relatively low energetic demands. Females require longer periods of invertebrate activity to fulfil their needs so select older stands for foraging, where invertebrate activity is higher. These results highlight additional understanding gained when data are not pooled across sexes. Mitigation for harvest operations could include ensuring that areas suitable for foraging and roosting are located within a radius equal to the home range of this bat species.
Resumo:
Black Sea Bass (Centropristis striata) in the mid-Atlantic Bight undertake seasonal cross-shelf movements to occupy inshore rocky reefs and hardbottom habitats between spring and fall. Shelf-wide migrations of this stock are well documented, but movements and home ranges of fish during their inshore residency period have not been described. We tagged 122 Black Sea Bass with acoustic transmitters at a mid-Atlantic reef to estimate home-range size and factors that influence movements (>400 m) at a 46.1-km2 study site between May and November 2003. Activity of Black Sea Bass was greatest and most consistent during summer but declined rapidly in September as water temperatures at the bottom of the seafloor increased on the inner shelf. Black Sea Bass maintained relatively large home ranges that were fish-size invariant but highly variable (13.7–736.4 ha), underscoring the importance of large sample sizes in examination of population-level characteristics of mobile species with complex social interactions. On the basis of observed variations in movement patterns and the size of home ranges, we postulate the existence of groups of conspecifics that exhibit similar space-use behaviors. The group of males released earlier in the tagging period used larger home ranges than the group of males released later in our study. In addition, mean activity levels and the probability of movement among acoustic stations varied among groups of fish in a complex manner that depended on sex. These differences in movement behaviors may increase the vulnerability of male fish to passive fishing gears, further exacerbating variation in exploitation rates for this species among reefs.
Resumo:
An organism’s home range dictates the spatial scale on which important processes occur (e.g. competition and predation) and directly affects the relationship between individual fitness and local habitat quality. Many reef fish species have very restricted home ranges after settlement and, here, we quantify home-range size in juveniles of a widespread and abundant reef fish in New Zealand, the common triplefin (Forsterygion lapillum). We conducted visual observations on 49 juveniles (mean size = 35-mm total length) within the Wellington harbour, New Zealand. Home ranges were extremely small, 0.053 m2 ± 0.029 (mean ± s.d.) and were unaffected by adult density, body size or substrate composition. A regression tree indicated that home-range size sharply decreased ~4.5 juveniles m–2 and a linear mixed model confirmed that home-range sizes in high-density areas (>4.5 juveniles m–2) were significantly smaller (34%) than those in low-density areas (after accounting for a significant effect of fish movement on our home-range estimates). Our results suggest that conspecific density may have negative and non-linear effects on home-range size, which could shape the spatial distribution of juveniles within a population, as well as influence individual fitness across local density gradients.
Resumo:
Radiotelemetry is an important tool used to aid the understanding and conservation of cryptic and rare birds. The two bird species of the family Picathartidae are little-known, secretive, forest-dwelling birds endemic to western and central Africa. In 2005, we conducted a radio-tracking trial of Grey-necked Picathartes Picathartes oreas in the Mbam Minkom Mountain Forest, southern Cameroon, using neck collar (two birds) and tail-mounted (four birds) transmitters to investigate the practicality of radio-tracking Picathartidae. Three birds with tail-mounted transmitters were successfully tracked with the fourth, though not relocated for radio tracking, resighted the following breeding season. Two of these were breeding birds that continued to provision young during radio tracking. One neck-collared bird was found dead three days after transmitter attachment and the other neither relocated nor resighted. As mortality in one bird was potentially caused by the neck collar transmitter we recommend tail-mounted transmitters in future radio-tracking studies of Picathartidae. Home ranges, shown using minimum convex polygon and kernel estimation methods, were generally small (<0.5 km(2)) and centred around breeding sites. A minimum of 60 fixes were found to be sufficient for home range estimation.