917 resultados para holocene beach sand
Resumo:
Detrital zircons from Holocene beach sand and igneous zircons from the Cretaceous syenite forming Cape Sines (Western Iberian margin) were dated
using laser ablation – inductively coupled plasma – mass spectrometry. The
U–Pb ages obtained were used for comparison with previous radiometric
data from Carboniferous greywacke, Pliocene–Pleistocene sand and Cretaceous syenite forming the sea cliff at Cape Sines and the contiguous coast.
New U–Pb dating of igneous morphologically simple and complex zircons
from the syenite of the Sines pluton suggests that the history of zircon crystallization was more extensive (ca 87 to 74 Ma), in contrast to the findings of
previous geochronology studies (ca 76 to 74 Ma). The U–Pb ages obtained in
Holocene sand revealed a wide interval, ranging from the Cretaceous to the
Archean, with predominance of Cretaceous (37%), Palaeozoic (35%) and
Neoproterozoic (19%) detrital-zircon ages. The paucity of round to subrounded grains seems to indicate a short transportation history for most of
the Cretaceous zircons (ca 95 to 73 Ma) which are more abundant in the
beach sand that was sampled south of Cape Sines. Comparative analysis
using the Kolmogorov–Smirnov statistical method, analysing sub-populations separately, suggests that the zircon populations of the Carboniferous
and Cretaceous rocks forming the sea cliff were reproduced faithfully in
Quaternary sand, indicating sediment recycling. The similarity of the pre-
Cretaceous ages (>ca 280 Ma) of detrital zircons found in Holocene sand, as
compared with Carboniferous greywacke and Pliocene–Pleistocene sand, provides support for the hypothesis that detritus was reworked into the beach
from older sedimentary rocks exposed along the sea cliff. The largest percentage of Cretaceous zircons (
Resumo:
Two depositional models to account for Holocene gravel-dominated beach ridges covered by dunes, occurring on the northern coast of Ireland, are considered in the light of infrared-stimulated luminescence ages of sand units within beach ridges, and 14C ages from organic horizons in dunes. A new chronostratigraphy obtained from prograded beach ridges with covering dunes at Murlough, north-east Ireland, supports a model of mesoscale alternating sediment decoupling (ASD) on the upper beach, rather than macroscale sequential sediment sourcing to account for prograded beach ridges and covering dunes. The ASD model specifies storm or fair-weather sand beach ridges forming at high-tide positions (on an annual basis at minimum), which acted as deflationary sources for landward foredune development. Only a limited number of such late-Holocene beach ridges survive in the observed prograded series. Beach ridges only survive when capped by storm-generated gravel beaches that are deposited on a mesoscale time spacing of 50–130 years. The morphodynamic shift from a dissipative beach face for dune formation to a reflective beach face for gravel capping appears to be controlled by the beach sand volume falling to a level where reflective conditions can prevail. Sediment volume entering the beach is thought to have fluctuated as a function of a forced regression associated with the falling sea level from the mid-Holocene highstand (ca. 6000 cal. yr BP) identified in north-east Ireland. The prograded beach ridges dated at ca. 3000 to 2000 cal. yr BP indicate that the Holocene highstand’s regressive phase may have lasted longer than previously specified.
Resumo:
Resistivity and dielectric constant are important parameters which influence the separation of particles in a drum-type electrostatic separator. The paper provides details of the measurement of the parameters and data on the magnitude of resistivity and dielectric constant of the minerals of beach sand.
Resumo:
Recent studies suggest that sand can serve as a vehicle for exposure of humans to pathogens at beach sites, resulting in increased health risks. Sampling for microorganisms in sand should therefore be considered for inclusion in regulatory programmes aimed at protecting recreational beach users from infectious disease. Here, we review the literature on pathogen levels in beach sand, and their potential for affecting human health. In an effort to provide specific recommendations for sand sampling programmes, we outline published guidelines for beach monitoring programmes, which are currently focused exclusively on measuring microbial levels in water. We also provide background on spatial distribution and temporal characteristics of microbes in sand, as these factors influence sampling programmes. First steps toward establishing a sand sampling programme include identifying appropriate beach sites and use of initial sanitary assessments to refine site selection. A tiered approach is recommended for monitoring. This approach would include the analysis of samples from many sites for faecal indicator organisms and other conventional analytes, while testing for specific pathogens and unconventional indicators is reserved for high-risk sites. Given the diversity of microbes found in sand, studies are urgently needed to identify the most significant aetiological agent of disease and to relate microbial measurements in sand to human health risk.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Background: Assessing the chemical or bacterial contamination in marine waters and sediments is a very common approach to evaluate marine pollution and associated risks. However, toxicity and organic pollution of beach sands have not yet been considered, except in adjacent waters. In the present study, the toxicity and the chemical contamination of natural beach sands collected 20 m from the shoreline at two sites located on the Mediterranean Sea (Marseille and La Marana, Corsica) were studied. Results: Up to 16.93% (net percentage) abnormal or dead larvae was observed in elutriates prepared from the urban beach sand sample (Marseille); no significant toxicity was observed in the sample collected from the reference beach in La Marana. Results of Fourier transform infrared spectroscopy analyses revealed that no microplastics were present in either of the samples. Several polycyclic aromatic hydrocarbons [PAHs] in both samples and a larger number of individual PAHs in the urban sample than in the sample collected from the reference beach were detected. In addition, the antioxidant dioctyldiphenylamine was detected in both beach sand samples, whereby a higher concentration was found in La Marana than in Marseille. Calculated PAH concentrations in elutriates were generally higher than measured ones. Conclusions: The results of this preliminary study provide evidence of toxicity and the presence of organic trace contaminants in beach sands from France. According to our results, monitoring using a combination of biotests and chemical analyses is recommended, especially of sediments from beaches abandoned to urban and industrial areas.
Resumo:
Relative sea-level rise has been a major factor driving the evolution of reef systems during the Holocene. Most models of reef evolution suggest that reefs preferentially grow vertically during rising sea level then laterally from windward to leeward, once the reef flat reaches sea level. Continuous lagoonal sedimentation ("bucket fill") and sand apron progradation eventually lead to reef systems with totally filled lagoons. Lagoonal infilling of One Tree Reef (southern Great Barrier Reef) through sand apron accretion was examined in the context of late Holocene relative sea-level change. This analysis was conducted using sedimentological and digital terrain data supported by 50 radiocarbon ages from fossil microatolls, buried patch reefs, foraminifera and shells in sediment cores, and recalibrated previously published radiocarbon ages. This data set challenges the conceptual model of geologically continuous sediment infill during the Holocene through sand apron accretion. Rapid sand apron accretion occurred between 6000 and 3000 calibrated yr before present B.P. (cal. yr B.P.); followed by only small amounts of sedimentation between 3000 cal. yr B.P. and present, with no significant sand apron accretion in the past 2 k.y. This hiatus in sediment infill coincides with a sea-level fall of similar to 1-1.3 m during the late Holocene (ca. 2000 cal. yr B.P.), which would have caused the turn-off of highly productive live coral growth on the reef flats currently dominated by less productive rubble and algal flats, resulting in a reduced sediment input to back-reef environments and the cessation in sand apron accretion. Given that relative sea-level variations of similar to 1 m were common throughout the Holocene, we suggest that this mode of sand apron development and carbonate production is applicable to most reef systems.
Resumo:
The well-known Quaternary section at Godrevy, west Cornwall has been often described during the past half century, however, a further section, about a kilometre to the south is considered for the first time since a brief mention at the beginning of the last century. This 200m long exposure rests upon a raised shore platform and consists of a basal raised beach and littoral sand, overlain by a local diamict revealing evidence of post-depositional frost disturbance and finally Holocene dune sand. It is proposed that this Strap Rock site be included within the general discussion of the Godrevy section.
Resumo:
This study aimed to assess the sanitary quality of water, and wet and dry sand from three beaches located in the South Coast region of Sao Paulo State, Brazil, selected taking into account the frequency of tourists and the water quality (good, fair and poor). Thirty-six water samples each of wet and dry sand and seawater were collected monthly over a period of one year and analyzed for fecal indicator bacteria (FIB: thermotolerant coliforms, Escherichia coli, and enterococci), presumptive Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and dermatophytes. The results revealed FIB concentrations more elevated in dry sand followed by wet sand and water. P. aeruginosa and presumptive S. aureus were detected with a similar frequency in water and sand samples, but maximum concentrations and geometric means were higher in dry sand. C. albicans was detected only in water samples whereas the dermatophyte Microsporum sp. was isolated exclusively from dry and wet sand samples. This evaluation showed also that the environment had a significant influence on P. aeruginosa but not on presumptive S. aureus concentrations. According to threshold values proposed in the literature for E. coli and enterococci dry sand densities, none of the beaches would be considered of sufficient quality for recreational activities.
Resumo:
A diverse suite of geochemical tracers, including 87Sr/86Sr and 143Nd/144Nd isotope ratios, the rare earth elements (REEs), and select trace elements were used to determine sand-sized sediment provenance and transport pathways within the San Francisco Bay coastal system. This study complements a large interdisciplinary effort (Barnard et al., 2012) that seeks to better understand recent geomorphic change in a highly urbanized and dynamic estuarine-coastal setting. Sand-sized sediment provenance in this geologically complex system is important to estuarine resource managers and was assessed by examining the geographic distribution of this suite of geochemical tracers from the primary sources (fluvial and rock) throughout the bay, adjacent coast, and beaches. Due to their intrinsic geochemical nature, 143Nd/144Nd isotopic ratios provide the most resolved picture of where sediment in this system is likely sourced and how it moves through this estuarine system into the Pacific Ocean. For example, Nd isotopes confirm that the predominant source of sand-sized sediment to Suisun Bay, San Pablo Bay, and Central Bay is the Sierra Nevada Batholith via the Sacramento River, with lesser contributions from the Napa and San Joaquin Rivers. Isotopic ratios also reveal hot-spots of local sediment accumulation, such as the basalt and chert deposits around the Golden Gate Bridge and the high magnetite deposits of Ocean Beach. Sand-sized sediment that exits San Francisco Bay accumulates on the ebb-tidal delta and is in part conveyed southward by long-shore currents. Broadly, the geochemical tracers reveal a complex story of multiple sediment sources, dynamic intra-bay sediment mixing and reworking, and eventual dilution and transport by energetic marine processes. Combined geochemical results provide information on sediment movement into and through San Francisco Bay and further our understanding of how sustained anthropogenic activities which limit sediment inputs to the system (e.g., dike and dam construction) as well as those which directly remove sediments from within the Bay, such as aggregate mining and dredging, can have long-lasting effects.
Resumo:
Miocene to Pleistocene sand and sandstone were recovered at Ocean Drilling Program Site 974 in the Tyrrhenian Basin and Sites 976 and 977 in the Alboran Basin. Sand detrital modes were determined for 45 samples from these sites, as well as 10 samples of Spanish beach sand. At Site 974, the Pleistocene section includes a number of volcaniclastic (vitric ash) and terrigenous sand layers; the latter are heterogeneous and contain sedimentary and metamorphic lithic fragments. Submarine canyon and onshore drainage patterns suggest that the most likely source of this sediment is the Tiber River drainage basin in central Italy, where a Pleistocene volcanic field is superimposed on Apennine orogenic rocks. In contrast, the Miocene sand in Unit III at Site 974 may have been derived from local basement highs. The quartzolithic composition and preponderance of metamorphic and sedimentary lithic debris in sand samples from Unit II at Site 976, Unit I at Sites 977 and 978, and Unit I at Site 979 are consistent with derivation from metamorphic rocks and sedimentary cover sequences that crop out in the Betic Cordillera of southern Spain (976-978) and in the Rif of Northern Africa (979). The sedimentary to metamorphic lithic fragment ratios in these samples reflect the relative proportion of metamorphic and sedimentary rocks exposed in onshore source terranes. In contrast, the source of the few quartzose Pleistocene sands at Site 976 was likely the Flysch Trough Units that crop out near Gibraltar. The significant volcanic component in certain intervals at Sites 976 (upper Miocene) and 977 (lower Pliocene to Miocene) is consistent with widespread volcanic activity during basin inception and development. Mean sand detrital modes for sand subgroups from both the Alboran and Tyrrhenian Basin sites plot in the Recycled Orogenic and Magmatic Arc compositional fields of Dickinson et al. (1983, doi:10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2), reflecting the hybrid tectonic histories of these basins.
Resumo:
Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.
Resumo:
This report responds to the 1986 Beaches Bill which, in recognition of the potential deleterious impact on Florida's beaches of inlets modified for navigation, mandated a study of those inlets with identification of recommended action to reduce the impacts. This report addresses west Coast inlets; East Coast inlets are the subject of a companion report. There are 37 inlets along that portion of Florida's West Coast commencing from Pensacola Bay Entrance to Caxambas Pass at the south end of Marco Island. Compared to those on the East Coast, most West Coast inlets have not had the deleterious effects on the adjacent beaches, yet all modified inlets without proper management have the potential of impacting unfavorably on the adjacent shorelines. Moreover, at present there is interest in opening three West Coast entrances which either have been open in the past (Midnight Pass) or which have opened occasionally (Navarre Pass and Entrance to Phillips Lake). A review of inlets in their natural condition demonstrates the presence of a shallow broad outer bar across which the longshore transport Occurs. These shallow and shifting bar features were unsuitable for navigation which in many cases has led to the deepening of the channels and fixing with one or two jetty structures. Inlets in this modified state along with inappropriate maintenance practices have the potential of placing great ero$ional stress along the adjacent beaches. Moreover. channel dredging can reduce wave sheltering of the shoreline by ebb tidal shoals and alter the equilibrium of the affected shoreline segments. The ultimate in poor sand management practice is the placement of good quality beach sand in water depths too great for the sand to reenter the longshore system under natural forces; depths of 12 ft. or less are considered appropriate for Florida in order to maintain the sand in the system. With the interference of the nearshore sediment transport processes by inlets modified for navigation, if the adjacent beaches are to be stabilized there must be an active monitoring program with commitment to placement of dredged material of beach quality on shoreline segments of documented need. Several East Coast inlets have such transfer facilities; however. the quantities of sand transferred should be increased. Although an evolution and improvement in the technical capability to manage sand resources in the vicinity of inlets is expected, an adequate capability exists today and a concerted program should be made to commence a scheduled implementation of this capability at those entrances causing greatest erosional stress on the adjacent shorelines. A brief summary review for each of the 37 West Coast inlets is presented including: a scaled aerial photograph, brief historical information, several items related to sediment losses at each inlet and special characteristics relevant to State responsibilities. For each inlet, where appropriate, the above infor~tion is utilized to develop a recommenced action. (PDF has 101 pages.)