992 resultados para hollow fibre


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model describing the dynamics of mammalian cell growth in hollow fibre bioreactor operated in closed shell mode is developed. Mammalian cells are assumed to grow as an expanding biofilm in the extra-capillary space surrounding the fibre. Diffusion is assumed to be the dominant process in the radial direction while axial convection dominates in the lumen of the bioreactor. The transient simulation results show that steep gradients in the cell number are possible under the condition of substrate limitation. The precise conditions which result in nonuniform growth of cells along the length of the bioreactor are delineated. The effect of various operating conditions, such as substrate feed rate, length of the bioreactor and diffusivity of substrate in different regions of the bioreactor, on the bioreactor performance are evaluated in terms of time required to attain the steady-state. The rime of growth is introduced as a measure of effectiveness factor for the bioreactor and is found to be dependent on two parameters, a modified Peclet number and a Thiele modulus. Diffusion, reaction and/or convection control regimes are identified based on these two parameters. The model is further extended to include dual substrate growth limitations, and the relative growth limiting characteristics of two substrates are evaluated. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of proteinaceous foods, particularly meat. To assist in the ongoing search for biomarkers of HCA exposure in blood, a method is described for the extraction from human plasma of the most abundant HCAs: 2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (and its isomer 7,8-DiMeIQx), using Hollow Fibre Membrane Liquid-Phase Microextraction. This technique employs 2.5 cm lengths of porous polypropylene fibres impregnated with organic solvent to facilitate simultaneous extraction from an alkaline aqueous sample into a low volume acidic acceptor phase. This low cost protocol is extensively optimised for fibre length, extraction time, sample pH and volume. Detection is by UPLC-MS/MS using positive mode electrospray ionisation with a 3.4 min runtime, with optimum peak shape, sensitivity and baseline separation being achieved at pH 9.5. To our knowledge this is the first description of HCA chromatography under alkaline conditions. Application of fixed ion ratio tolerances for confirmation of analyte identity is discussed. Assay precision is between 4.5 and 8.8% while lower limits of detection between 2 and 5 pg/mL are below the concentrations postulated for acid-labile HCA-protein adducts in blood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of wireless electrochemical promotion of catalysis (EPOC) of a Pt catalyst supported on a mixed ionic electronic conducting hollow fibre membranes is investigated. This reactor configuration offers high surface areas per unit volume and is ideally suited for scaled-up applications. The MIEC membrane used is the La 0.6Sr 0.4Co 0.2Fe 0.8O 3 perovskite (LSCF) with a Pt catalyst film deposited on the outer surface of the LSCF membrane. Experimental results showed that after initial catalyst deactivation (in the absence of an oxygen chemical potential difference across the membrane) the catalytic rate can be enhanced by using an oxygen sweep and wireless EPOC can be used for the in situ regeneration of a deactivated catalyst. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hollow fibre membranes of mixed conducting perovskite La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) were prepared via the combined phase inversion and sintering technique. The fibres were tested for air separation with a home-made reactor under the oxygen partial pressure gradient generated by the air/He streams. Some fibres were in situ activated by introducing methane in the He sweeping gas at high temperatures. The activated membranes with new morphology were created by transforming the inner densified surface layer to a porous structure. Compared to the original membranes, the activated gave appreciable higher oxygen fluxes. At 800 °C, the oxygen fluxes were increased by a factor of 10 after activation was carried out at 1000 °C for 1 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we report the production of novel high performance BaBi0.05Sc0.1Co0.85O3-3 (BaBiScCo) hollow fibres delivering oxygen fluxes of 11.4 ml cm-2 min-1 at 950 °C. The doping of bismuth, a highly ionic conductor, at the B-site of a barium based perovskite overcame oxygen ionic transport limitations even at temperatures as low as 600 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinetic demixing and decomposition were studied on three La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen-separation hollow fibre membrane modules, which were operated under a 0.21/0.009bar oxygen partial pressure difference at 950°C for 1128, 3672 and 5512h, respectively. The post-operation membranes were characterized by Secondary Ion Mass Spectrometry, Scanning Electronic Microscope, Energy Dispersive Spectrum and X-ray Diffraction. The occurrence of kinetic demixing and decomposition was confirmed through the microstructural evolution of the membranes. Secondary-phase grains were found on the air-side surface of the membranes after the long-term operation and Co and Fe enrichment as well as La depletion was found on the surface and in the bulk at the air side. Cation diffusivities were found to be in the order Co>Fe>Sr>La. Kinetic demixing and decomposition rates of the membranes at the air side were found to be self-accelerating with time; the role of A-site deficiency in the perovskite lattice in the bulk near the air side surface is implicated in the mechanism. The oxygen permeability was not affected by the kinetic demixing and decomposition of the material during long-term operation (up to 5512h), however, we may expect permeability to be affected by secondary phase formation on the air-side surface at even longer operational times. © 2010 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compared to the Conventional Activated Sludge Process (ASP), Membrane Bioreactors (MBRs) have proven their superior performance in wastewater treatment and reuse during the past two decades. Further, MBRs have wide array of applications such as the removal of nutrients, toxic and persistent organic pollutants (POPs), which are impossible or difficult to remove using ASP. However, fouling of membrane is one of the main drawbacks to the widespread application of MBR technology and Extra-cellular Polymeric Substances (EPS) secreted by microbes are considered as one of the major foulants, which will reduce the flux (L/m2/h) through the membrane. Critical flux is defined as the flux above which membrane cake or gel layer formation due to deposition of EPS and other colloids on the membrane surface occurs. Thus, one of the operating strategies to control the fouling of MBRs is to operate those systems below the critical flux (at Sub-Critical flux). This paper discusses the critical flux results, which were obtained from short-term common flux step method, for a lab-scale MBR system treating Ametryn. This study compares the critical flux values that were obtained by operating the MBR system (consisting of a submerged Hollow-Fibre membrane with pore size of 0.4μm and effective area of 0.2m2) at different operating conditions and mixed liquor properties. This study revealed that the critical flux values found after the introduction of Ametryn were significantly lower than those of obtained before adding Ametryn to the synthetic wastewater. It was also revealed that the production of carbohydrates (in SMP) is greater than proteins, subsequent to the introduction of Ametryn and this may have influenced the membrane to foul more. It was also observed that a significant removal (40-60%) of Ametryn from this MBR during the critical flux determination experiments with 40 minutes flux-step duration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discharging the nutrient rich aquaculture effluents into inland water bodies and oceans is becoming a serious concern due to the adverse effect that brings in the form of eutrophication and subsequent damages to those waters. A laboratory scale biological reactor consisting of a denitrifying compartment followed by a submerged membrane bioreactor (SMBR) compartment was used to treat 40 L d−1 of aquaculture effluent with an average concentration of 74 mg L−1 nitrate (NO3 − ). Sugar was added to the aquaculture effluent in order that to enter into the denitrifying compartment at a carbon: nitrogen ratio (C:N) of 2:1 and 4:1. A hollow fibre membrane with a pore size of 0.4 μm and a filtration area of 0.20 m2 was used in the SMBR and was operated at an average flux of 0.20 m3 m−2 d−1. An intermittent suction period of 12 min followed by a relaxation period of 3 min was maintained in the SMBR throughout the experiment. Different aeration rates of 1, 3, 5 and 10 Lpm were applied to the SMBR to determine the rate of membrane fouling and 5 Lpm aeration rate was found to be optimum with respect to the rate of fouling of membrane at a C:N ratio of 4:1. The average rate of fouling at 1, 3, 5 and 10 Lpm were 1.17, 0.70, 0.48 and 0.52 kPa d−1, respectively. The increase in the rate of fouling when the aeration was increased from 5 to 10 Lpm may be due to the breakage of suspended particles into finer particles which could have increased the fouling of membrane. It was also found that increasing the C:N ratio from 2:1 to 4:1 resulted in more cake being formed on the membrane surface as well as an increase in the reduction of NO3 − from 64% to 78%. Preliminary calculations show that 2.4 to 3.2 g of suspended solids could be accumulated per square meter of membrane surface before physical cleaning of membrane is required (at a transmembrane pressure of 20 kPa).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two laboratory-scale membrane bioreactor systems were investigated to treat high saline wastewater containing 1,000 mg/L COD and 32 g/L NaCl, namely: the yeast membrane bioreactor (YMBR) and the bacterial membrane bioreactor (BMBR). COD removal of both processes was above 90% at a hydraulic retention time (HRT) of 5 hours (volumetric loading of 5 kg COD/m³.d), sludge retention time (SRT) of 50 days (the MLSS of above 14 g/L and the F/M of 0.4 d-1). Under these operating conditions, the YMBR could run at a ten-fold lower transmembrane pressure with significantly reduced membrane fouling rate compared to BMBR. This may be because of low production of adhesive extracellular polymers (ECP) and the secondary filtration layer formed from large yeast cells. ECP production of bacterial sludge was increased considerably at high salt concentrations (32 g/L and 45 g/L) and long SRTs. For the bacterial sludge, the increased salinity led to increase in ECP, whereas the ECP content of the yeast sludge was relatively small.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytokinin ribosides (N(6)-substituted adenosine derivatives) have been shown to have anticancer activity both in vitro and in vivo. This study presents the first systematic analysis of the relationship between the chemical structure of cytokinins and their cytotoxic effects against a panel of human cancer cell lines with diverse histopathological origins. The results confirm the cytotoxic activity of N(6)-isopentenyladenosine, kinetin riboside, and N(6)-benzyladenosine and show that the spectrum of cell lines that are sensitive to these compounds and their tissues of origin are wider than previously reported. The first evidence that the hydroxylated aromatic cytokinins (ortho-, meta-, para-topolin riboside) and the isoprenoid cytokinin cis-zeatin riboside have cytotoxic activities is presented. Most cell lines in the panel showed greatest sensitivity to ortho-topolin riboside (IC(50)=0.5-11.6 microM). Cytokinin nucleotides, some synthesized for the first time in this study, were usually active in a similar concentration range to the corresponding ribosides. However, cytokinin free bases, 2-methylthio derivatives and both O- and N-glucosides showed little or no toxicity. Overall the study shows that structural requirements for cytotoxic activity of cytokinins against human cancer cell lines differ from the requirements for their activity in plant bioassays. The potent anticancer activity of ortho-topolin riboside (GI(50)=0.07-84.60 microM, 1st quartile=0.33 microM, median=0.65 microM, 3rd quartile=1.94 microM) was confirmed using NCI(60), a standard panel of 59 cell lines, originating from nine different tissues. Further, the activity pattern of oTR was distinctly different from those of standard anticancer drugs, suggesting that it has a unique mechanism of activity. In comparison with standard drugs, oTR showed exceptional cytotoxic activity against NCI(60) cell lines with a mutated p53 tumour suppressor gene. oTR also exhibited significant anticancer activity against several tumour models in in vivo hollow fibre assays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A review of ultrafiltration (UF) theory and equipment has been made. Dextran is fractionated industrially by ethanol precipitation, which is a high energy intensive process. The aims of this work were to investigate the fractionation of dextran using UF and to compare the efficiency and costs of UF fractionation with ethanol fractionation. This work is the continuation of research conducted at Aston, which was concerned with the fractionation of dextran using gel permeation chromatography (GPC) and hollow fibre UF membranes supplied by Amicon Ltd. Initial laboratory work centred on determining the most efficient make and configuration of membrane. UF membranes of the Millipore cassette configuration, and the DDS flat-sheet configuration, were examined for the fracationation of low molecular weight (MW) dextran. When compared to Amicon membranes, these membranes were found to be inferior. DDS membranes of 25 000 and 50 000 MW cut-offs were shown to be capable of fractionating high MW dextran with the same efficiency as GPC. The Amicon membranes had an efficiency comparable to that of ethanol fractionation. To increase this efficiency a theoretical UF membrane cascade was adopted to utilize favourable characteristics encountered in batch mode membrane experiments. The four stage cascade used recycled permeates in a counter- current direction to retentate flow, and was operated 24 hours per day controlled by a computer. Using 5 000 MW cut-off membranes the cascade improved the batch efficiency by at least 10% for a fractionation at 6 000 MW. Economic comparisons of ethanol fractionation, combined GPC and UF fractionation, and UF fractionation of dextran were undertaken. On an economic basis GPC was the best method for high MW dextran fractionation. When compared with a plant producing 100 tonnes pa of clinical dextran, by ethanol fractionation, a combined GPC and UF cascade fractionation could produce savings on operating costs and an increased dextran yield of 5%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work investigates the fouling mechanisms of PVDF hollow fibre membrane (0.03 μm) during the dead end ultrafiltration at a fixed permeate flux (outside to inside configuration) of complex synthetic seawater composed by humic acids, alginic acids, inorganic particles and numerous salts at high concentrations. Short term ultrafiltration experiments at 100 L.h-1.m-2 show that the optimal specific filtered volume seems to be equal to 50 L.m-2. A residual fouling resistance equal to 2.1010 m-1 is added after each cycle of filtration during 8h of ultrafiltration at 100 L.h-1.m-2 and 50 L.m-2. Most of the fouling is reversible (80%). Organics are barely (15% of humic acids) retained by the membrane. Backwash efficiency drops during operation which induces less organics into backwash waters. Humic acids could preferentially accumulate on the membrane early in the ultrafiltration and alginic acids after the build-up of a fouling pre-layer. Colloids and particulates could accumulate inside a heterogeneous fouling layer and/or the concentrate compartment of the membrane module before being more largely recovered inside backwash waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research was a step forward in developing bond strength of CFRP strengthened steel hollow sections under tension loads. The studies have revealed the ultimate load carrying capacity of the CFRP strengthened steel hollow sections and the stress distribution for different orientations of the CFRP sheet at different layers. This thesis presents a series of experimental and finite element analysis to determine a good understanding of the bond characteristics of CFRP strengthened steel hollow sections.