998 resultados para historical ecological research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staff and students of the Surveying and Spatial Sciences discipline at QUT have worked collaboratively with the Institute of Sustainable Resources in the creation and development of spatial information layers and infrastructure to support multi-disciplinary research efforts at the Samford Ecological Research Facility (SERF). The SERF property is unique in that it provides staff and students with a semi-rural controlled research base for multiple users. This paper aims to describe the development of a number of spatial information layers and network of survey monuments that assist and support research infrastructure at SERF. A brief historical background about the facility is presented along with descriptions of the surveying and mapping activities undertaken. These broad ranging activities include introducing monument infrastructure and a geodetic control network; surveying activities for aerial photography ground-control targets including precise levelling with barcode instruments; development of an ortho-rectified image spatial information layer; Real-Time-Kinematic Global Positioning Systems (RTK-GPS) surveying for constructing 100metre confluence points/monuments to support science-based disciplines to undertake environmental research transects and long-term ecological sampling; and real-world learning initiative to assist with water engineering projects and student experiential learning. The spatial information layers and physical infrastructure have been adopted by two specific yet diverse user groups with an interest in the long-term research focus of SERF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than half a decade has passed since the December 26th 2004 tsunami hit the Indian coast leaving a trail of ecological, economic and human destruction in its wake. We reviewed the coastal ecological research carried out in India in the light of the tsunami. In addition, we also briefly reviewed the ecological research in other tsunami affected countries in Asia namely Sri Lanka, Indonesia, Thailand and Maldives in order to provide a broader perspective of ecological research after tsunami. A basic search in ISI Web of Knowledge using keywords ``tsunami'' and ``India'' resulted in 127 peer reviewed journal articles, of which 39 articles were pertaining to ecological sciences. In comparison, Sri Lanka, Indonesia, Thailand and Maldives had, respectively, eight, four, 21 and two articles pertaining to ecology. In India, bioshields received the major share of scientific interest (14 out of 39) while only one study (each) was dedicated to corals, seagrasses, seaweeds and meiofauna, pointing to the paucity of research attention dedicated to these critical ecosystems. We noted that very few interdisciplinary studies looked at linkages between pure/applied sciences and the social sciences in India. In addition, there appears to be little correlation between the limited research that was done and its influence on policy in India. This review points to gap areas in ecological research in India and highlights the lessons learnt from research in other tsunami-affected countries. It also provides guidance on the links between science and policy that are required for effective coastal zone management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term hydrologic studies in the Arctic simply do not exist. Although the Arctic has been identified as an area that is extremely sensitive to climate change, continuous scientific research has been limited to the past seven years. Earlier research was spotty, of short duration, and directed at only one or two hydrologic elements. Immediate future research needs to encompass all the major hydrologic elements, including winter processes, and needs to address the problem of scaling from small to larger areas in hydrologic models. Also, an international program of cooperation between northern countries is needed to build a greater scientific base for monitoring and identifying potential changes wrought by the climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term research in the western English Channel, undertaken by the marine laboratories in Plymouth, is described and details of survey methods, sites, and time series given in this chapter. Major findings are summarized and their limitations outlined. Current research, with recent reestablishment and expansion of many sampling programmes, is presented, and possible future approaches are indicated. These unique long-term data sets provide an environmental baseline for predicting complex ecological responses to local, regional, and global environmental change. Between 1888 and the present, investigations have been carried out into the physical, chemical, and biological components (ranging from plankton and fish to benthic and intertidal assemblages) of the western English Channel ecosystem. The Marine Biological Association of the United Kingdom has performed the main body of these observations. More recent contributions come from the Continuous Plankton Recorder Survey, now the Sir Alister Hardy Foundation for Ocean Science, dating from 1957; the Institute for Marine Environmental Research, from 1974 to 1987; and the Plymouth Marine Laboratory, which was formed by amalgamation of the Institute for Marine Environmental Research and part of the Marine Biological Association, from 1988. Together, these contributions constitute a unique data series; one of the longest and most comprehensive samplings of environmental and marine biological variables in the world. Since the termination of many of these time series in 1987-1988 during a reorganisation of UK marine research, there has been a resurgence of interest in long-term environmental change. Many programmes have been restarted and expanded with support from several agencies. The observations span significant periods of warming (1921-1961; 1985-present) and cooling (1962-1980). During these periods of change, the abundance of key species underwent dramatic shifts. The first period of warming saw changes in zooplankton, pelagic fish, and larval fish, including the collapse of an important herring fishery. During later periods of change, shifts in species abundances have been reflected in other assemblages, such as the intertidal zone and the benthic fauna. Many of these changes appear to be related to climate, manifested as temperature changes, acting directly or indirectly. The hypothesis that climate is a forcing factor is widely supported today and has been reinforced by recent studies that show responses of marine organisms to climatic attributes such as the strength of the North Atlantic Oscillation. The long-term data also yield important insights into the effects of anthropogenic disturbances such as fisheries exploitation and pollution. Comparison of demersal fish hauls over time highlights fisheries effects not only on commercially important species but also on the entire demersal community. The effects of acute ("Torrey Canyon" oil spill) and chronic (tributyltin [TBT] antifoulants) pollution are clearly seen in the intertidal records. Significant advances in diverse scientific disciplines have been generated from research undertaken alongside the long-term data series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Caribbean Sea and its watersheds show signs of environmental degradation. These fragile coastal ecosystems are susceptible to environmental impacts, in part because of their oligotrophic conditions and their critical support of economic development. Tourism is one of the major sources of income in the Caribbean, making the region one of the most ecotourism dependent in the world. Yet there are few explicit, long-term, comprehensive studies describing the structure and function of Caribbean ecosystems. We propose a conceptual framework using the environmental signature hypothesis of tropical coastal settings to develop a series of research questions for the reef–sea-grass–wetland seascape. We applied this approach across 13 sites throughout the region, including ecosystems in a variety of coastal settings with different vulnerabilities to environmental impacts. This approach follows the strategy developed by the Long Term Ecological Research program of the National Science Foundation to establish ecological research questions best studied over decades and large spatial areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Long-Term Ecological Research (ILTER) network comprises > 600 scientific groups conducting site-based research within 40 countries. Its mission includes improving the understanding of global ecosystems and informs solutions to current and future environmental problems at the global scales. The ILTER network covers a wide range of social-ecological conditions and is aligned with the Programme on Ecosystem Change and Society (PECS) goals and approach. Our aim is to examine and develop the conceptual basis for proposed collaboration between ILTER and PECS. We describe how a coordinated effort of several contrasting LTER site-based research groups contributes to the understanding of how policies and technologies drive either toward or away from the sustainable delivery of ecosystem services. This effort is based on three tenets: transdisciplinary research; cross-scale interactions and subsequent dynamics; and an ecological stewardship orientation. The overarching goal is to design management practices taking into account trade-offs between using and conserving ecosystems toward more sustainable solutions. To that end, we propose a conceptual approach linking ecosystem integrity, ecosystem services, and stakeholder well-being, and as a way to analyze trade-offs among ecosystem services inherent in diverse management options. We also outline our methodological approach that includes: (i) monitoring and synthesis activities following spatial and temporal trends and changes on each site and by documenting cross-scale interactions; (ii) developing analytical tools for integration; (iii) promoting trans-site comparison; and (iv) developing conceptual tools to design adequate policies and management interventions to deal with trade-offs. Finally, we highlight the heterogeneity in the social-ecological setting encountered in a subset of 15 ILTER sites. These study cases are diverse enough to provide a broad cross-section of contrasting ecosystems with different policy and management drivers of ecosystem conversion; distinct trends of biodiversity change; different stakeholders’ preferences for ecosystem services; and diverse components of well-being issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine historical research has made progress in bridging the gap between science and policy, but examples in which it has been effectively applied remain few. In particular, its application to aquaculture remains unexplored. Using actual examples of natural resource management in the state of South Australia, we illustrate how historical data of varying resolution can be incorporated into aquaculture planning. Historical fisheries records were reviewed to identify data on the now extinct native oyster Ostrea angasi fishery throughout the 1800 and early-1900s. Records of catch, number of boats fishing, and catch per unit effort (cpue) were used to test fishing rates and estimate the total quantity of oysters taken from select locations across periods of time. Catch quantities enabled calculation of the minimum number of oysters per hectare for two locations. These data were presented to government scientists, managers, and industry. As a result, interest in growing O. angasi increased and new areas for oyster aquaculture were included in regulatory zoning (spatial planning). Records of introductions of the non-native oyster Saccostrea glomerata, Sydney rock oysters, from 1866 through 1959, were also identified and used to evaluate the biosecurity risk of aquaculture for this species through semi-quantitative risk assessment. Although applications to culture S. glomerata in South Australia had previously been declined, the inclusion of historical data in risk assessment led to the conclusion that applications to culture this species would be accepted. The examples presented here have been effectively incorporated into management processes and represent an important opportunity for the aquaculture industry in South Australia to diversify. This demonstrates that historical data can be used to inform planning and support industry, government, and societies in addressing challenges associated with aquaculture, as well as natural resource management more broadly.