990 resultados para historical climate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eliminadas las páginas en blanco

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Various lake phases have developed in the upper Great Lakes in response to isostatic adjustment and changes in water supply since the retreat of the Laurentide Ice Sheet. Georgian Bay experienced a lowstand that caused a basin wide unconformity approximately 7,500 years ago that cannot be explained by geological events. Thecamoebians are shelled protozoans abundant in freshwater environments and they are generally more sensitive to changing environmental conditions than the surrounding vegetation. Thecamoebians can be used to reconstruct the paleolimnology. The abundance of thecamoebians belonging to the genus Centropyxis, which are known to tolerate slightly brackish conditions (i.e. high concentrations of ions) records highly evaporative conditions in a closed basin. During the warmer interval (9000 to 700 yBP), the Centropyxis - dominated population diminishes and is replaced by an abundant and diverse Difflugia dominate population. Historical climate records from Tobermory and Midland, Ontario were correlated with the Lake Huron water level curve. The fossil pollen record and comparison with modem analogues allowed a paleo-water budget to be calculated for Georgian Bay. Transfer function analysis of fossil pollen data from Georgian Bay records cold, dry winters similar to modem day Minneapolis, Minnesota. Drier climates around this time are also recorded in bog environments in Southem Ontario - the drying of Lake Tonawanda and inception of paludification in Willoughby Bog, for instance, dates around 7,000 years ago. The dramatic impact of climate change on the water level in Georgian Bay underlines the importance of paleoclimatic research for predicting future environmental change in the Great Lakes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean1. These links are extensive, influencing a range of climate processes such as hurricane activity2 and African Sahel3, 4, 5 and Amazonian5 droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations6, 7, 8, 9, 10. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures11, 12, but climate models have so far failed to reproduce these interactions6, 9 and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860–2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910–1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol–cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol–cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Twenty-eight microfiches (11 x 15 cm.) in pocket mounted on cover p. [3]. Header title: Historical climate network--temperature and precipitation data plots.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies of greenhouse gas emissions (GHGE) from beef production systems in northern Australia have been based on models of ‘steady-state’ herd structures that do not take into account the considerable inter-annual variation in liveweight gain, reproduction and mortality rates that occurs due to seasonal conditions. Nor do they consider the implications of flexible stocking strategies designed to adapt these production systems to the highly variable climate. The aim of the present study was to quantify the variation in total GHGE (t CO2e) and GHGE intensity (t CO2e/t liveweight sold) for the beef industry in northern Australia when variability in these factors was considered. A combined GRASP–Enterprise modelling platform was used to simulate a breeding–finishing beef cattle property in the Burdekin River region of northern Queensland, using historical climate data from 1982–2011. GHGE was calculated using the method of Australian National Greenhouse Gas Inventory. Five different stocking-rate strategies were simulated with fixed stocking strategies at moderate and high rates, and three flexible stocking strategies where the stocking rate was adjusted annually by up to 5%, 10% or 20%, according to pasture available at the end of the growing season. Variation in total annual GHGE was lowest in the ‘fixed moderate’ (~9.5 ha/adult equivalent (AE)) stocking strategy, ranging from 3799 to 4471 t CO2e, and highest in the ‘fixed high’ strategy (~5.9 ha/AE), which ranged from 3771 to 7636 t CO2e. The ‘fixed moderate’ strategy had the least variation in GHGE intensity (15.7–19.4 t CO2e/t liveweight sold), while the ‘flexible 20’ strategy (up to 20% annual change in AE) had the largest range (10.5–40.8 t CO2e/t liveweight sold). Across the five stocking strategies, the ‘fixed moderate’ stocking-rate strategy had the highest simulated perennial grass percentage and pasture growth, highest average rate of liveweight gain (121 kg/steer), highest average branding percentage (74%) and lowest average breeding-cow mortality rate (3.9%), resulting in the lowest average GHGE intensity (16.9 t CO2e/t liveweight sold). The ‘fixed high’ stocking rate strategy (~5.9 ha/AE) performed the poorest in each of these measures, while the three flexible stocking strategies were intermediate. The ‘fixed moderate’ stocking strategy also yielded the highest average gross margin per AE carried and per hectare. These results highlight the importance of considering the influence of climate variability on stocking-rate management strategies and herd performance when estimating GHGE. The results also support a body of previous work that has recommended the adoption of moderate stocking strategies to enhance the profitability and ecological stability of beef production systems in northern Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new physics-based technique for correcting inhomogeneities present in sub-daily temperature records is proposed. The approach accounts for changes in the sensor-shield characteristics that affect the energy balance dependent on ambient weather conditions (radiation, wind). An empirical model is formulated that reflects the main atmospheric processes and can be used in the correction step of a homogenization procedure. The model accounts for short- and long-wave radiation fluxes (including a snow cover component for albedo calculation) of a measurement system, such as a radiation shield. One part of the flux is further modulated by ventilation. The model requires only cloud cover and wind speed for each day, but detailed site-specific information is necessary. The final model has three free parameters, one of which is a constant offset. The three parameters can be determined, e.g., using the mean offsets for three observation times. The model is developed using the example of the change from the Wild screen to the Stevenson screen in the temperature record of Basel, Switzerland, in 1966. It is evaluated based on parallel measurements of both systems during a sub-period at this location, which were discovered during the writing of this paper. The model can be used in the correction step of homogenization to distribute a known mean step-size to every single measurement, thus providing a reasonable alternative correction procedure for high-resolution historical climate series. It also constitutes an error model, which may be applied, e.g., in data assimilation approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large uncertainties exist concerning the impact of Greenland ice sheet melting on the Atlantic meridional overturning circulation (AMOC) in the future, partly due to different sensitivity of the AMOC to freshwater input in the North Atlantic among climate models. Here we analyse five projections from different coupled ocean–atmosphere models with an additional 0.1 Sv (1 Sv = 10 6 m3/s) of freshwater released around Greenland between 2050 and 2089. We find on average a further weakening of the AMOC at 26°N of 1.1 ± 0.6 Sv representing a 27 ± 14% supplementary weakening in 2080–2089, as compared to the weakening relative to 2006–2015 due to the effect of the external forcing only. This weakening is lower than what has been found with the same ensemble of models in an identical experimen - tal set-up but under recent historical climate conditions. This lower sensitivity in a warmer world is explained by two main factors. First, a tendency of decoupling is detected between the surface and the deep ocean caused by an increased thermal stratification in the North Atlantic under the effect of global warming. This induces a shoaling of ocean deep ventilation through convection hence ventilating only intermediate levels. The second important effect concerns the so-called Canary Current freshwater leakage; a process by which additionally released fresh water in the North Atlantic leaks along the Canary Current and escapes the convection zones towards the subtropical area. This leakage is increasing in a warming climate, which is a consequence of decreasing gyres asymmetry due to changes in Ekman rumping. We suggest that these modifications are related with the northward shift of the jet stream in a warmer world. For these two reasons the AMOC is less susceptible to freshwater perturbations (near the deep water formation sides) in the North Atlantic as compared to the recent historical climate conditions. Finally, we propose a bilinear model that accounts for the two former processes to give a conceptual explanation about the decreasing AMOC sensitivity due to freshwater input. Within the limit of this bilinear model, we find that 62 ± 8% of the reduction in sensitivity is related with the changes in gyre asymmetry and freshwater leakage and 38 ± 8% is due to the reduction in deep ocean ventilation associated with the increased stratification in the North Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 335 year stable isotope record from a New Caledonia coral (22°S, 166°E) helps fill a large gap in historical climate reconstructions. Although the long-term coral s18O-based sea surface temperature (SST) trend is one of warming, there are notable decadal fluctuations, especially in the early 18th and early 19th centuries. Mean annual SSTs between 1658 and 1900 are estimated to be ~0.3°C lower than the 20th century average, with interdecadal excursions of 0.5°-0.8°C. Time series analyses of the coral isotope record reveals significant concentrations of variance in the El Niño band; an inderdecadal spectral peak is present, but its robustness requires additional statistical evaluation. A secular but irregular decrease in coral d13C values begins in the mid-1800s and may reflect the anthropogenic perturbation of the carbon reservoir. These and other results indicate that the New Caledonia coral isotope record is a valuable source of information on southwest Pacific climate history.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.