932 resultados para histone lysine methyltransferase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used high-resolution SNP genotyping to identify regions of genomic gain and loss in the genomes of 212 medulloblastomas, malignant pediatric brain tumors. We found focal amplifications of 15 known oncogenes and focal deletions of 20 known tumor suppressor genes (TSG), most not previously implicated in medulloblastoma. Notably, we identified previously unknown amplifications and homozygous deletions, including recurrent, mutually exclusive, highly focal genetic events in genes targeting histone lysine methylation, particularly that of histone 3, lysine 9 (H3K9). Post-translational modification of histone proteins is critical for regulation of gene expression, can participate in determination of stem cell fates and has been implicated in carcinogenesis. Consistent with our genetic data, restoration of expression of genes controlling H3K9 methylation greatly diminishes proliferation of medulloblastoma in vitro. Copy number aberrations of genes with critical roles in writing, reading, removing and blocking the state of histone lysine methylation, particularly at H3K9, suggest that defective control of the histone code contributes to the pathogenesis of medulloblastoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molting hormone ecdysone triggers chromatin changes via histone modifica- tions that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with tran- scriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdy- sone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is re- quired for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SET domain protein lysine methyltransferases (PKMT) are a structurally unique class of enzymes that catalyze the specific methylation of lysine residues in a number of different substrates. Especially histone-specific SET domain PKMTs have received widespread attention because of their roles in the regulation of epigenetic gene expression and the development of some cancers. Rubisco large subunit methyltransferase (RLSMT) is a chloroplast-localized SET domain PKMT responsible for the formation of trimethyl-lysine-14 in the large subunit of Rubisco, an essential photosynthetic enzyme. Here, we have used cryoelectron microscopy to produce an 11-A density map of the Rubisco-RLSMT complex. The atomic model of the complex, obtained by fitting crystal structures of Rubisco and RLSMT into the density map, shows that the extensive contact regions between the 2 proteins are mainly mediated by hydrophobic residues and leucine-rich repeats. It further provides insights into potential conformational changes that may occur during substrate binding and catalysis. This study presents the first structural analysis of a SET domain PKMT in complex with its intact polypeptide substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phosphorylation balance governed by Ipl1 Aurora kinase and the Glc7 phosphatase is essential for normal chromosome segregation in S. cerevisiae . Deletion of SET1, a histone K4 methyltransferase, suppresses the temperature sensitive phenotype of ipl1-2, and loss the catalytic activity of Set1 is important for this suppression. SET1 deletion also suppresses chromosome loss in ipl1-2 cells. Deletion of other Set1 complex components suppresses the temperature sensitivity of ipl1-2 as well. In contrast, SET1 deletion is synthetic lethal combined with glc7-127. Strikingly, these effects are independent of previously defined functions for Set1 in transcription initiation and histone H3 methylation. I find that Set1 methylates conserved lysines in a kinetochore protein, Dam1, a key mitotic substrate of Ipl1/Glc7. Biochemical and genetic experiments indicate that Dam1 methylation inhibits Ipl1-mediated phosphorylation of flanking serines. My studies demonstrate that Set1 has important, unexpected functions in mitosis through modulating the phosphorylation balance regulated by Ipl1/Glc7. Moreover, my findings suggest that antagonism between lysine methylation and serine phosphorylation is a fundamental mechanism for controlling protein function. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Myc proto-oncoproteins are transcription factors that recognize numerous target genes through hexameric DNA sequences called E-boxes. The mechanism by which they then activate the expression of these targets is still under debate. Here, we use an RNAi screen in Drosophila S2 cells to identify Drosophila host cell factor (dHCF) as a novel co-factor for Myc that is functionally required for the activation of a Myc-dependent reporter construct. dHCF is also essential for the full activation of endogenous Myc target genes in S2 cells, and for the ability of Myc to promote growth in vivo. Myc and dHCF physically interact, and they colocalize on common target genes. Furthermore, down-regulation of dHCF-associated histone acetyltransferase and histone methyltransferase complexes in vivo interferes with the Myc biological activities. We therefore propose that dHCF recruits such chromatin-modifying complexes and thereby contributes to the expression of Myc targets and hence to the execution of Myc biological activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Telomeres are associated with chromatin-mediated silencing of genes in their vicinity. However, how epigenetic markers mediate mammalian telomeric silencing and whether specific proteins may counteract this effect are not known. We evaluated the ability of CTF1, a DNA- and histone-binding transcription factor, to prevent transgene silencing at human telomeres. CTF1 was found to protect a gene from silencing when its DNA-binding sites were interposed between the gene and the telomeric extremity, while it did not affect a gene adjacent to the telomere. Protein fusions containing the CTF1 histone-binding domain displayed similar activities, while mutants impaired in their ability to interact with the histone did not. Chromatin immunoprecipitation indicated the propagation of a hypoacetylated histone structure to various extents depending on the telomere. The CTF1 fusion protein was found to recruit the H2A.Z histone variant at the telomeric locus and to restore high histone acetylation levels to the insulated telomeric transgene. Histone lysine trimethylations were also increased on the insulated transgene, indicating that these modifications may mediate expression rather than silencing at human telomeres. Overall, these results indicate that transcription factors can act to delimit chromatin domain boundaries at mammalian telomeres, thereby blocking the propagation of a silent chromatin structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of vectors for the over-expression of tagged proteins in Dictyostelium were designed, constructed and tested. These vectors allow the addition of an N- or C-terminal tag (GFP, RFP, 3xFLAG, 3xHA, 6xMYC and TAP) with an optimized polylinker sequence and no additional amino acid residues at the N or C terminus. Different selectable markers (Blasticidin and gentamicin) are available as well as an extra chromosomal version; these allow copy number and thus expression level to be controlled, as well as allowing for more options with regard to complementation, co- and super-transformation. Finally, the vectors share standardized cloning sites, allowing a gene of interest to be easily transfered between the different versions of the vectors as experimental requirements evolve. The organisation and dynamics of the Dictyostelium nucleus during the cell cycle was investigated. The centromeric histone H3 (CenH3) variant serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. A number of Dictyostelium histone H3-domain containing proteins as GFP-tagged fusions were expressed and it was found that one of them functions as CenH3 in this species. Like CenH3 from some other species, Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins. The targeting domain, comprising α-helix 2 and loop 1 of the histone fold is required for targeting CenH3 to centromeres. Compared to the targeting domain of other known and putative CenH3 species, Dictyostelium CenH3 has a shorter loop 1 region. The localisation of a variety of histone modifications and histone modifying enzymes was examined. Using fluorescence in situ hybridisation (FISH) and CenH3 chromatin-immunoprecipitation (ChIP) it was shown that the six telocentric centromeres contain all of the DIRS-1 and most of the DDT-A and skipper transposons. During interphase the centromeres remain attached to the centrosome resulting in a single CenH3 cluster which also contains the putative histone H3K9 methyltransferase SuvA, H3K9me3 and HP1 (heterochromatin protein 1). Except for the centromere cluster and a number of small foci at the nuclear periphery opposite the centromeres, the rest of the nucleus is largely devoid of transposons and heterochromatin associated histone modifications. At least some of the small foci correspond to the distal telomeres, suggesting that the chromosomes are organised in a Rabl-like manner. It was found that in contrast to metazoans, loading of CenH3 onto Dictyostelium centromeres occurs in late G2 phase. Transformation of Dictyostelium with vectors carrying the G418 resistance cassette typically results in the vector integrating into the genome in one or a few tandem arrays of approximately a hundred copies. In contrast, plasmids containing a Blasticidin resistance cassette integrate as single or a few copies. The behaviour of transgenes in the nucleus was examined by FISH, and it was found that low copy transgenes show apparently random distribution within the nucleus, while transgenes with more than approximately 10 copies cluster at or immediately adjacent to the centromeres in interphase cells regardless of the actual integration site along the chromosome. During mitosis the transgenes show centromere-like behaviour, and ChIP experiments show that transgenes contain the heterochromatin marker H3K9me2 and the centromeric histone variant H3v1. This clustering, and centromere-like behaviour was not observed on extrachromosomal transgenes, nor on a line where the transgene had integrated into the extrachromosomal rDNA palindrome. This suggests that it is the repetitive nature of the transgenes that causes the centromere-like behaviour. A Dictyostelium homolog of DET1, a protein largely restricted to multicellular eukaryotes where it has a role in developmental regulation was identified. As in other species Dictyostelium DET1 is nuclear localised. In ChIP experiments DET1 was found to bind the promoters of a number of developmentally regulated loci. In contrast to other species where it is an essential protein, loss of DET1 is not lethal in Dictyostelium, although viability is greatly reduced. Loss of DET1 results in delayed and abnormal development with enlarged aggregation territories. Mutant slugs displayed apparent cell type patterning with a bias towards pre-stalk cell types.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’acétylation est une modification post-traductionnelle des protéines essentielles. Elle est impliquée dans bon nombre de processus cellulaires importants comme la régulation de la structure de la chromatine et le recrutement de protéines. Deux groupes d’enzymes, soient les lysines acétyltransférases et les lysines désacétylases, régulent cette modification, autant sur les histones que sur les autres protéines. Au cours des dernières années, de petites molécules inhibitrices des désacétylases ont été découvertes. Certaines d’entre elles semblent prometteuses contre diverses maladies telles le cancer. L’acide valproïque, un inhibiteur de deux des trois classes des désacétylases, a un effet antiprolifératif chez plusieurs organismes modèles. Toutefois, les mécanismes cellulaires sous-jacents à cet effet restent encore méconnus. Ce mémoire met en lumière l’effet pH dépendant de l’acide valproïque sur différentes voies cellulaires importantes chez la levure Saccharomyces cerevisiae. Il démontre que ce composé a la capacité d’inhiber la transition entre les phases G1 et S par son action sur l’expression des cyclines de la phase G1. De plus, il inhibe l’activation de la kinase principale de la voie activée suite à un stress à la paroi cellulaire. L’acide valproïque occasionne également un arrêt dans la réplication de l’ADN sans y causer de dommage. Il s’agit là d’un effet unique qui, à notre connaissance, n’est pas observable avec d’autres agents qui inhibent la progression en phase S.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’acétylation est une modification post-traductionnelle des protéines essentielles. Elle est impliquée dans bon nombre de processus cellulaires importants comme la régulation de la structure de la chromatine et le recrutement de protéines. Deux groupes d’enzymes, soient les lysines acétyltransférases et les lysines désacétylases, régulent cette modification, autant sur les histones que sur les autres protéines. Au cours des dernières années, de petites molécules inhibitrices des désacétylases ont été découvertes. Certaines d’entre elles semblent prometteuses contre diverses maladies telles le cancer. L’acide valproïque, un inhibiteur de deux des trois classes des désacétylases, a un effet antiprolifératif chez plusieurs organismes modèles. Toutefois, les mécanismes cellulaires sous-jacents à cet effet restent encore méconnus. Ce mémoire met en lumière l’effet pH dépendant de l’acide valproïque sur différentes voies cellulaires importantes chez la levure Saccharomyces cerevisiae. Il démontre que ce composé a la capacité d’inhiber la transition entre les phases G1 et S par son action sur l’expression des cyclines de la phase G1. De plus, il inhibe l’activation de la kinase principale de la voie activée suite à un stress à la paroi cellulaire. L’acide valproïque occasionne également un arrêt dans la réplication de l’ADN sans y causer de dommage. Il s’agit là d’un effet unique qui, à notre connaissance, n’est pas observable avec d’autres agents qui inhibent la progression en phase S.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Studies into posttranslational modifications of histones, notably acetylation, have yielded important insights into the dynamic nature of chromatin structure and its fundamental role in gene expression. The roles of other covalent histone modifications remain poorly understood. To gain further insight into histone methylation, we investigated its occurrence and pattern of site utilization in Tetrahymena, yeast, and human HeLa cells. In Tetrahymena, transcriptionally active macronuclei, but not transcriptionally inert micronuclei, contain a robust histone methyltransferase activity that is highly selective for H3. Microsequence analyses of H3 from Tetrahymena, yeast, and HeLa cells indicate that lysine 4 is a highly conserved site of methylation, which to date, is the major site detected in Tetrahymena and yeast. These data document a nonrandom pattern of H3 methylation that does not overlap with known acetylation sites in this histone. In as much as H3 methylation at lysine 4 appears to be specific to macronuclei in Tetrahymena, we suggest that this modification pattern plays a facilitatory role in the transcription process in a manner that remains to be determined. Consistent with this possibility, H3 methylation in yeast occurs preferentially in a subpopulation of H3 that is preferentially acetylated.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The cellular function of the menin tumor suppressor protein, product of the MEN1 gene mutated in familial multiple endocrine neoplasia type 1, has not been defined. We now show that menin is associated with a histone methyltransferase complex containing two trithorax family proteins, MLL2 and Ash2L, and other homologs of the yeast Set1 assembly. This menin-associated complex methylates histone H3 on lysine 4. A subset of tumor-derived menin mutants lacks the associated histone methyltransferase activity. In addition, menin is associated with RNA polymerase II whose large subunit carboxyl-terminal domain is phosphorylated on Ser5. Men1 knockout embryos and cells show decreased expression of the homeobox genes Hoxc6 and Hoxc8. Chromatin immunoprecipitation experiments reveal that menin is bound to the Hoxc8 locus. These results suggest that menin activates the transcription of differentiation-regulating genes by covalent histone modification, and that this activity is related to tumor suppression by MEN1.