857 resultados para hipothalamy-pituitary axis
Resumo:
Aim. To investigate the effects of physical training associated to dexamethasone administration in carbohydrate metabolism and adrenocorticotrophic hormone (ACTH) release. Materials and methods. Young Wistar rats were divided into four groups: sedentary control (CS), sedentary dexanzethasone (DxS), trained control (CT) and trained dexamethasone (DxT). The rats were submitted to swimming training associate to administration of dexamethasone for ten weekends. Before sacrifice the rats received Subcutaneous insulin to calculate the maximum decreased in blood glucose. Venous blood was sampled obtained at the end experiment period to determine glucose, insulin, free fatty acids (FFA) and ACTH. Gastrocnemius and liver tissue samples were used to determination glycogen, and adipose epididimal tissue was used to measured the weight. Results. Dexamethasone administration provoke insulin resistance and the physical training reverted this aspect. Training promoted increase in muscle and liver glycogen store and a high utilization of FFA. Moreover the dexamethasone provoke decreased of ACTH release in response to acute exercise, showing marked differences in the functioning of the hypothalamy pituitary-adrenal (HPA) axis between groups of rats. Conclusions. a) Low-dose of dexamethasone promote several side effects in metabolism intermediary and chronic exposure to steroid was associated with insulin resistance; b) the regular swimming exercise promoted increased insulin sensitiviry Therefore. exercise can override the dexametasone negative feedback of the HPA axis activation in rats.
Resumo:
The objective was to evaluate when the LH reserve was re-established in postpartum Nellore (Bos indicus) cows by evaluating the response of the hypothalamic-pituitary axis responsiveness to exogenous GnRH or estradiol benzoate (EB). Additionally, we tested the influence of dietary supplementation (SUPL) and calf removal (CR) on the duration of postpartum anestrus. Ninety multiparous lactating Nellore cows were randomly assigned to eight groups. The EB and GnRH groups received 1.0 mg EB (N = 7), and 50 μg lecireline (N = 16), respectively. Additional cows were given the same hormones, and subjected to either nutritional supplementation (EB-SUPL, N = 9; GnRH-SUPL, N = 16), or calf removal at 72 hours after calving (EB-CR, N = 4; GnRH-CR, N = 13). The remaining two groups were the LH (12.5 mg, N = 14) and control groups (saline, N = 11). Hormones were administered weekly from 7 (±5) days postpartum to first ovulation (detection of a CL during a weekly ultrasonographic examination). Blood samples were collected just before and 2 hours (GnRH, LH, and control groups) or 18 hours (EB groups) after hormone or saline (control) administration. Ovulation occurred as early as 15 days postpartum in the GnRH group. The mean ± SEM intervals (days) from calving to first ovulation were EB, 87.7 ± 4.2; EB-CR, 20.3 ± 1.2; EB-SUPL, 60.3 ± 3.2; GnRH, 40.4 ± 2.1; GnRH-CR, 21.0 ± 1.1; GnRH-SUPL, 26.4 ± 1.1; LH, 35.6 ± 1.1; and control, 60.9 ± 2.1. We concluded that there was sufficient LH in the pituitary gland (of Nellore cows) from the second week postpartum to induce ovulation in response to exogenous GnRH. Additionally, calf removal and nutritional supplementation reduced, by 2 to 4 weeks, the interval from calving to an LH increase and ovulation induced by GnRH or EB. © 2013.
Resumo:
Effects of a short-term hyper- and hypoprolactinaemia on serum concentrations of LH, testosterone and semen quality in six male Beagles were investigated. Blood samples were collected at 3-day intervals for 12 weeks. The time span was divided into five 3-week periods: pre-treatment, metoclopramide (MCP) treatment (0.2 mg/kg orally three times daily), cabergoline (CAB) treatment (5 mu g/kg orally once daily), post-treatment 1 and post-treatment 2. In the latter, only semen characteristics were evaluated. Semen parameters were analyzed once per week during the whole 15-week investigation time. At the end of each period, the effects of a single intravenous injection of thyrotropin-releasing hormone (TRH; 10 mu g/kg) on the secretion of prolactin (PRL), LH, testosterone, thyroid-stimulating hormone and thyroxine (T4) were investigated. Pre-treatment serum PRL concentration increased under MCP (p < 0.05), followed by a decrease under CAB administration (p < 0.05). Luteinizing hormone and testosterone concentrations were not affected. Except for straight-line sperm velocity, semen quality did not differ between collection periods. A single iv TRH injection induced a significant PRL increase at 20 min in all experimental periods except during CAB treatment. Luteinizing hormone and testosterone did not show clear TRH-related changes. Basic T4 levels were significantly reduced after CAB treatment ( p < 0.05). The results of the present study demonstrate that MCP-induced short-term hyperprolactinaemia in male beagles does not seriously affect the hypothalamo-pituitary axis and semen quality.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). A mutation in a novel, tissue-specific, paired-like homeodomain transcription factor, termed Prophet of Pit-1 (PROP1), has been identified as causing the Ames dwarf (df) mouse phenotype, and thereafter, different PROP1 gene alterations have been found in humans with CPHD. We report on the follow-up of two consanguineous families (n = 12), with five subjects affected with CPHD (three males and two females) caused by the same nucleotide C to T transition, resulting in the substitution of Arg-->Cys in PROP1 at codon 120. Importantly, there is a variability of phenotype, even among patients with the same mutation. The age at diagnosis was dependent on the severity of symptoms, ranging from 9 months to 8 yr. Although in one patient TSH deficiency was the first symptom of the disorder, all patients became symptomatic by exhibiting severe growth retardation and failure to thrive, which was mainly caused by GH deficiency (n = 4). The secretion of the pituitary-derived hormones (GH, PRL, TSH, LH, and FSH) declined gradually with age, following a different pattern in each individual; therefore, the deficiencies developed over a variable period of time. All of the subjects entered puberty spontaneously, and the two females also experienced menarche and periods before a replacement therapy was necessary.
Resumo:
It has been shown previously that female mice homozygous for an alpha-fetoprotein (AFP) null allele are sterile as a result of anovulation, probably due to a defect in the hypothalamic-pituitary axis. Here we show that these female mice exhibit specific anomalies in the expression of numerous genes in the pituitary, including genes involved in the gonadotropin-releasing hormone pathway, which are underexpressed. In the hypothalamus, the gonadotropin-releasing hormone gene, Gnrh1, was also found to be down-regulated. However, pituitary gene expression could be normalized and fertility could be rescued by blocking prenatal estrogen synthesis using an aromatase inhibitor. These results show that AFP protects the developing female brain from the adverse effects of prenatal estrogen exposure and clarify a long-running debate on the role of this fetal protein in brain sexual differentiation.
Resumo:
Little is known about the effects of clustered nursing care on hypothalamic pituitary axis (HPA) responses in preterm infants in the neonatal intensive care unit.
Resumo:
Background/Aims: Prolonged physical exercise induces adaptive alterations in the hypothalamic-pituitary axis, increasing cortisol metabolism, and reducing cortisol synthesis and glucocorticoid sensitivity. The mechanisms responsible for this relative glucocorticoid resistance remain unknown but may involve expression of genes encoding glucocorticoid receptor (GR) and/or inflammatory molecules of nuclear factor kappa B1 (NFkB1) signaling pathway and cytokines. This study aimed to determine the impact of prolonged physical training on the expression of genes involved in glucocorticoid action and inflammatory response. Methods: Normal sedentary male cadets of the Brazilian Air Force Academy were submitted to 6 weeks of standardized physical training. Eighteen of 29 initially selected cadets were able to fully complete the training program. Fasting glucose, insulin and cortisol levels, cytokine concentration and the expression of genes encoding GR, NFkB1, inhibitor of NFkB1 and IkB kinase A were determined before and after the training period. Results: Prolonged physical exercise reduced the basal cortisol levels and the percent cortisol reduction after dexamethasone. These findings were associated with a significant reduction in the mRNA levels of GR (6.3%), NFkB1 (63%), inhibitor of NFkB1 (25%) and IkB kinase A (46%) with concomitant reduction in cytokine concentrations (ELISA). Conclusions: Prolonged physical training decreases the glucocorticoid sensitivity and the mRNA levels of the GR gene combined with decreased mRNA of genes related to the NFkB pathway. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
The objective of the present study was to analyze the prospective alterations of the testis and epididymis in a defined strain of alcoholic rats in order to contribute to our understanding of the effects of chronic alcoholism on reproduction. The testis and epididymis of the animals were submitted to morphological analysis by macroscopy, light microscopy and electron microscopy and to morphometric analysis. The UCh rats showed atrophy of the epithelium and reduction of testis and epididymis weight, liver hypertrophy and fat infiltration and alterations of the hypothalamus-pituitary axis. Ethanol induces changes in the weight and in the epithelium of the testis and epididymis and in the hypothalamus-pituitary axis of the UCh rats.
Resumo:
Chronic alcoholism alters reproduction and therefore may be responsible for alterations of prostate and seminal vesicles, which are the subject of this analysis in UCh ethanol-drinking rats. The prostate and seminal vesicles of 20 animals were submitted to macroscopic, light microscopy, electron microscopy and morphometric analysis. The UCh rats showed atrophy of the epithelium and reduction of the weight of the prostate and seminal vesicle, liver hypertrophy and fat infiltration and alterations of the hypothalamus-pituitary axis. Ethanol induces changes in the weight and in the epithelium of prostate and seminal vesicles and hypothalamus-pituitary axis of UCh rats.
Resumo:
Chronic alcoholism alters reproduction and therefore may be responsible for alterations of vas deferens, which are the subject of this analysis in UCh ethanol-drinking rats. The proximal and distal segments of the vas deferens of 20 animals were submitted to macroscopic, light microscopy, electron microscopy and morphometric analysis. The UCh rats showed atrophy of the epithelium of the vas deferens and alterations of the hypothalamus-pituitary axis. Ethanol induces changes in the epithelium of the vas deferens and hypothalamus-pituitary axis of UCh rats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
You can set the resistance training such as making a move against a resistance by performing a muscle contraction and generating a muscular adaptation. This form of training, was initially used only in training athletes aiming to strengthen and improve fitness. Some coaches did not give proper focus, as the increase in muscle mass would cause loss of flexibility and agility. But over time a huge evolution occurred within this area and the practitioners of resistance training are no longer just athletes, and reached the whole community, from young to elderly, being a physical activity that generates a large caloric expenditure and has several health benefits, improve the cardiovascular system and decreasing the amount of body fat in the body. Cortisol is a hormone secreted from a stressful stimulus to the body, secretion undergoes control of the hypothalamic-pituitary axis, which releases the hormone into the bloodstream andrenocorticotrópico, going to the adrenal cortex responsible for their release. This has catabolic function, acting in the metabolism of carbohydrates, proteins and lipids, as well as having an important effect antiflamatório. Testosterone is a steroid hormone cholesterol from being produced by the testicles in men, as in women is produced to a lesser extent in ovary and adrenal glands, has functions androgenic and anabolic. Androgen function is responsible for the development of male sexual characteristics, while on anabolic function operates in the growth of muscles and bones, influencing the development of the human body organs. Within the metabolic changes that occur in the resistance training testosterone plays an important role in protein synthesis, influencing the production of strength and / or power during exercise. The objective of this work is through a literature review to assess the effects of resistance training on the production of these hormones and the relationship between them
Resumo:
Thyroid gland function is regulated by the hypothalamic-pituitary axis via the secretion of TSH, according to environmental, developmental, and circadian stimuli. TSH modulates both the secretion of thyroid hormone and gland trophism through interaction with a specific guanine nucleotide-binding protein-coupled receptor (TSH receptor; TSH-R), which elicits the activation of the cAMP-dependent signaling pathway. After TSH stimulation, the levels of TSH-R RNA are known to decrease dramatically within a few hours. This phenomenon ultimately leads to homologous long-term desensitization of the TSH-R. Here we show that TSH drives the induction of the inducible cAMP early repressor (ICER) isoform of the cAMP response element (CRE) modulator gene both in rat thyroid gland and in the differentiated thyroid cell line FRTL-5. The kinetics of ICER protein induction mirrors the down-regulation of TSH-R mRNA. ICER binds to a CRE-like sequence in the TSH-R promoter and represses its expression. Thus, ICER induction by TSH in the thyroid gland represents a paradigm of the molecular mechanism by which pituitary hormones elicit homologous long-term desensitization.
Resumo:
Developmental vitamin D deficiency (DVD) has been shown to alter the orderly pattern of brain development. Even though the period of vitamin D deficiency is restricted to gestation this is sufficient to induce behavioural abnormalities in the adult offspring consistent with those seen in many animal models of schizophrenia. Given that some of these behavioural alterations could also be an indirect result of either impaired maternal hypothalamic pituitary axis (HPA) function (which in turn could influence maternal care) or the result of a permanent alteration in HPA function in the adult offspring we have examined HPA status in both maternal animals and adult offspring. In this study we have established that HPA function is normal in the maternally vitamin D deficient rat. We replicate the behavioural phenotype of hyperlocomotion whilst establishing that HPA function is also unchanged in the adult mate offspring. We conclude that the behavioural alterations induced by DVD deficiency are due to some adverse event in brain development rather than via an alteration in stress response. (c) 2006 Elsevier Ltd. All rights reserved.