999 resultados para hillslope surface
Resumo:
National Science Fund for Distinguished Young Scholars of China [40225004]; National Natural Science Foundation of China [40471048]
Resumo:
Research on arable sandy loam and silty clay loam soils on 4° slopes in England has shown that tramlines (i.e. the unseeded wheeling areas used to facilitate spraying operations in cereal crops) can represent the most important pathway for phosphorus and sediment loss from moderately sloping fields. Detailed monitoring over the October–March period in winters 2005–2006 and 2006–2007 included event-based sampling of surface runoff, suspended and particulate sediment, and dissolved and particulate phosphorus from hillslope segments (each ∼300–800 m2) established in a randomized block design with four replicates of each treatment at each of two sites on lighter and heavier soils. Experimental treatments assessed losses from the cropped area without tramlines, and from the uncropped tramline area, and were compared to losses from tramlines which had been disrupted once in the autumn with a shallow tine. On the lighter soil, the effects of removal or shallow incorporation of straw residues was also determined. Research on both sandy and silty clay loam soils across two winters showed that tramline wheelings represented the dominant pathway for surface runoff and transport of sediment, phosphorus and nitrogen from cereal crops on moderate slopes. Results indicated 5·5–15·8% of rainfall lost as runoff, and losses of 0·8–2·9 kg TP ha−1 and 0·3–4·8 t ha−1 sediment in tramline treatments, compared to only 0·2–1·7% rainfall lost as runoff, and losses of 0·0–0·2 kg TP ha−1 and 0·003–0·3 t ha−1 sediment from treatments without tramlines or those where tramlines had been disrupted. The novel shallow disruption of tramline wheelings using a tine once following the autumn spray operation consistently and dramatically reduced (p < 0·001) surface runoff and loads of sediment, total nitrogen and total phosphorus to levels similar to those measured in cropped areas between tramlines. Results suggest that options for managing tramline wheelings warrant further refinement and evaluation with a view to incorporating them into spatially-targeted farm-level management planning using national or catchment-based agri-environment policy instruments aimed at reducing diffuse pollution from land to surface water systems. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
Non peer reviewed
Resumo:
Landscape evolution and surface morphology in mountainous settings are a function of the relative importance between sediment transport processes acting on hillslopes and in channels, modulated by climate variables. The Niesen nappe in the Swiss Penninic Prealps presents a unique setting in which opposite facing flanks host basins underlain by identical lithologies, but contrasting litho-tectonic architectures where lithologies either dip parallel to the topographic slope or in the opposite direction (i.e. dip slope and non-dip slope). The north-western facing Diemtigen flank represents such a dip slope situation and is characterized by a gentle topography, low hillslope gradients, poorly dissected channels, and it hosts large landslides. In contrast, the south-eastern facing Frutigen side can be described as non-dip slope flank with deeply incised bedrock channels, high mean hillslope gradients and high relief topography. Results from morphometric analysis reveal that noticeable differences in morphometric parameters can be related to the contrasts in the relative importance of the internal hillslope-channel system between both valley flanks. While the contrasting dip-orientations of the underlying flysch bedrock has promoted hillslope and channelized processes to contrasting extents and particularly the occurrence of large landslides on the dip slope flank, the flank averaged beryllium-10 (10Be)-derived denudation rates are very similar and range between 0.20 and 0.26 mm yr−1. In addition, our denudation rates offer no direct relationship to basin's slope, area, steepness or concavity index, but reveal a positive correlation to mean basin elevation that we interpret as having been controlled by climatically driven factors such as frost-induced processes and orographic precipitation. Our findings illustrate that while the landscape properties in this part of the northern Alpine border can mainly be related to the tectonic architecture of the underlying bedrock, the denudation rates have a strong orographic control through elevation dependent mean annual temperature and precipitation.
Resumo:
Studying landscape evolution of the Earthís surface is difficult because both tectonic forces and surface processes control its response to perturbation, and ultimately, its shape and form. Researchers often use numerical models to study erosional response to deformation because there are rarely natural settings in which we can evaluate both tectonic activity and topographic response over appropriate time scales (103-105 years). In certain locations, however, geologic conditions afford the unique opportunity to study the relationship between tectonics and topography. One such location is along the Dragonís Back Pressure Ridge in California, where the landscape moves over a structural discontinuity along the San Andreas Fault and landscape response to both the initiation and cessation of uplift can be observed. In their landmark study, Hilley and Arrowsmith (2008) found that geomorphic metrics such as channel steepness tracked uplift and that hillslope response lagged behind that of rivers. Ideal conditions such as uniform vegetation density and similar lithology allowed them to view each basin as a developmental stage of response to uplift only. Although this work represents a significant step forward in understanding landscape response to deformation, it remains unclear how these results translate to more geologically complex settings. In this study, I apply similar methodology to a left bend along the San Andreas Fault in the Santa Cruz Mountains, California. At this location, the landscape is translated through a zone of localized uplift caused by the bend, but vegetation, lithology, and structure vary. I examine the geomorphic response to uplift along the San Andreas Fault bend in order to determine whether predicted landscape patterns can be observed in a larger, more geologically complex setting than the Dragonís Back Pressure Ridge. I find that even with a larger-scale and a more complex setting, geomorphic metrics such as channel steepness index remain useful tools for evaluating landscape evolution through time. Steepness indices in selected streams of study record localized uplift caused by the restraining bend, while hillslope adjustment in the form of landsliding occurs over longer time scales. This project illustrates that it is possible to apply concepts of landscape evolution models to complex settings and is an important contribution to the body of geomorphological study.
Resumo:
Acknowledgments This work was granted by the China-UK jointed Red Soil Critical Zone project from National Natural Science Foundation of China (NSFC: 41571130053; 41301233) and from Natural Environmental Research Council (NERC: Code: NE/N007611/1), and by the National Key Technology R&D Program of China (2011BAD31B04). We thank two anonymous reviewers for their constructive comments.
Resumo:
-
Resumo:
This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.