896 resultados para higher order field theory
Resumo:
A general derivation of the anharmonic coefficients for a periodic lattice invoking the special case of the central force interaction is presented. All of the contributions to mean square displacement (MSD) to order 14 perturbation theory are enumerated. A direct correspondance is found between the high temperature limit MSD and high temperature limit free energy contributions up to and including 0(14). This correspondance follows from the detailed derivation of some of the contributions to MSD. Numerical results are obtained for all the MSD contributions to 0(14) using the Lennard-Jones potential for the lattice constants and temperatures for which the Monte Carlo results were calculated by Heiser, Shukla and Cowley. The Peierls approximation is also employed in order to simplify the numerical evaluation of the MSD contributions. The numerical results indicate the convergence of the perturbation expansion up to 75% of the melting temperature of the solid (TM) for the exact calculation; however, a better agreement with the Monte Carlo results is not obtained when the total of all 14 contributions is added to the 12 perturbation theory results. Using Peierls approximation the expansion converges up to 45% of TM• The MSD contributions arising in the Green's function method of Shukla and Hubschle are derived and enumerated up to and including 0(18). The total MSD from these selected contributions is in excellent agreement with their results at all temperatures. Theoretical values of the recoilless fraction for krypton are calculated from the MSD contributions for both the Lennard-Jones and Aziz potentials. The agreement with experimental values is quite good.
Resumo:
A gauge theory of second order in the derivatives of the auxiliary field is constructed following Utiyama's program. A novel field strength G = partial derivative F + fAF arises besides the one of the first order treatment, F = partial derivative A - partial derivative A + fAA. The associated conserved current is obtained. It has a new feature: topological terms are determined from local invariance requirements. Podolsky Generalized Eletrodynamics is derived as a particular case in which the Lagrangian of the gauge field is L-P alpha G(2). In this application the photon mass is estimated. The SU(N) infrared regime is analysed by means of Alekseev-Arbuzov-Baikov's Lagrangian. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In the weak field approximation of higher order gravity theory a gravitational potential is described by a Newtonian plus a Yukawa-like term. This new term is used to explain some aspects of galactic dynamics, without considering dark matter. Its presence modifies the scattering probability of a massive intruder star and relaxation time of the stellar system.
Resumo:
Podolsky's higher-order field equations are obtained by generalizing the laws of Podolsky's electrostatics, which follow from Coulomb's generalized law and superposition, to be consistent with special relativity. In addition, it is necessary to take into account the independence of the observed charge of a particle on its speed. It is also shown that the gauge-independent term concerning the Feynman propagator for Podolsky's generalized electrodynamics has a good ultraviolet behaviour at the expense of a negative metric massive ghost which, contrary to what is currently assumed in the literature, is non-tachyonic. A brief discussion on Podolsky's characteristic length is presented as well.
Resumo:
We present a higher derivative gauge theory in (2 + 1) dimensions which can have its parameters suitably tuned in order to become a consistent quantum field theory, in the sense that both tachyons and ghosts are absent from the particle spectrum of the theory.
Resumo:
A modified form of Green's integral theorem is employed to derive the energy identity in any water wave diffraction problem in a single-layer fluid for free-surface boundary condition with higher-order derivatives. For a two-layer fluid with free-surface boundary condition involving higher-order derivatives, two forms of energy identities involving transmission and reflection coefficients for any wave diffraction problem are also derived here by the same method. Based on this modified Green's theorem, hydrodynamic relations such as the energy-conservation principle and modified Haskind–Hanaoka relation are derived for radiation and diffraction problems in a single as well as two-layer fluid.
Resumo:
In this paper we examine the suitability of higher order shear deformation theory based on cubic inplane displacements and parabolic normal displacements, for stress analysis of laminated composite plates including the interlaminar stresses. An exact solution of a symmetrical four layered infinite strip under static loading has been worked out and the results obtained by the present theory are compared with the exact solution. The present theory provides very good estimates of the deflections, and the inplane stresses and strains. Nevertheless, direct estimates of strains and stresses do not display the required interlaminar stress continuity and strain discontinuity across the interlaminar surface. On the other hand, ‘statically equivalent stresses and strains’ do display the required interlaminar stress continuity and strain discontinuity and agree very closely with the exact solution.
Resumo:
This paper presents the stability analysis of functionally graded plate integrated with piezoelectric actuator and sensor at the top and bottom face, subjected to electrical and mechanical loading. The finite element formulation is based on first order and higher order shear deformation theory, degenerated shell element, von-Karman hypothesis and piezoelectric effect. The equation for static analysis is derived by using the minimum energy principle and solutions for critical buckling load is obtained by solving eigenvalue problem. The material properties of the functionally graded plate are assumed to be graded along the thickness direction according to simple power law function. Two types of boundary conditions are used, such as SSSS (simply supported) and CSCS (simply supported along two opposite side perpendicular to the direction of compression and clamped along the other two sides). Sensor voltage is calculated using present analysis for various power law indices and FG (functionally graded) material gradations. The stability analysis of piezoelectric FG plate is carried out to present the effects of power law index, material variations, applied mechanical pressure and piezo effect on buckling and stability characteristics of FG plate.
Resumo:
Magnetic vortex that consists of an in-plane curling magnetization configuration and a needle-like core region with out-of-plane magnetization is known to be the ground state of geometrically confined submicron soft magnetic elements. Here magnetodynamics of relatively thick (50-100 nm) circular Ni80Fe20 dots were probed by broadband ferromagnetic resonance in the absence of external magnetic field. Spin excitation modes related to the thickness dependent vortex core gyrotropic dynamics were detected experimentally in the gigahertz frequency range. Both analytical theory and micromagnetic simulations revealed that these exchange dominated modes are flexure oscillations of the vortex core string with n = 0,1,2 nodes along the dot thickness. The intensity of the mode with n = 1 depends significantly on both dot thickness and diameter and in some cases is higher than the one of the uniform mode with n = 0. This opens promising perspectives in the area of spin transfer torque oscillators.
Resumo:
In this work, a Finite Element implementation of a higher order strain gradient theory (due to Fleck and Hutchinson, 2001) has been used within the framework of large deformation elasto-viscoplasticity to study the indentation of metals with indenters of various geometries. Of particular interest is the indentation size effect (ISE) commonly observed in experiments where the hardness of a range of materials is found to be significantly higher at small depths of indentation but reduce to a lower, constant value at larger depths. That the ISE can be explained by strain gradient plasticity is well known but this work aims to qualitatively compare a gamut of experimental observations on this effect with predictions from a higher order strain gradient theory. Results indicate that many of the experimental observations are qualitatively borne out by our simulations. However, areas exist where conflicting experimental results make assessment of numerical predictions difficult. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The fifth-order effective nonlinear responses at fundament frequency and higher-order harmonics are given for nonlinear composites, which obey a current-field relation of the form J = sigmaE + x\E\(2) E, if a sinusoidal alternating current (AC) external field with finite frequency omega is applied. As two examples, we have investigated the cylinder and spherical inclusion embedded in a host and, for larger volume fraction, also derived the formulae of effective nonlinear responses at higher-order harmonics by the aid of the general effective response definition. Furthermore, the relationships between effective nonlinear responses at harmonics are given. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The idealized system of an atomically flat metallic surface [highly oriented pyrolytic graphite (HOPG)] and an organic monolayer (porphyrin) was used to determine whether the dielectric function and associated properties of thin films can be accessed with scanning-near-field scanning optical microscopy (s-NSOM). Here, we demonstrate the use of harmonics up to fourth order and the polarization dependence of incident light to probe dielectric properties on idealized samples of monolayers of organic molecules on atomically smooth substrates. An analytical treatment of light/sample interaction using the s-NSOM tip was developed in order to quantify the dielectric properties. The theoretical analysis and numerical modeling, as well as experimental data, demonstrate that higher order harmonic scattering can be used to extract the dielectric properties of materials with tens of nanometer spatial resolution. To date, the third harmonic provides the best lateral resolution (∼50 nm) and dielectric constant contrast for a porphyrin film on HOPG. © 2009 American Institute of Physics.