915 resultados para high-molecular-weight glutenin subunit(HMW-GS)
Resumo:
应用花粉管通道技术将新疆大赖草总DNA导入小麦,用高重序列分析方法,已为大赖草总DNA转入小麦提供了初步的分子证据。在转 化后代中选育出稳定遗传的大穗变异株系,分析表明,这些转化株中蛋白质含量明显增高(13%-17%)。对基因供体新疆大赖草、受 体春麦761、转化株的高分子量谷蛋白亚基(HMW-GS)进行了SDS-PAGE分析,发现这些转化株中HMW-GS发生了很大变化,并在此基础 上,用来自小麦基因组的四对特异引物,以PCR方法扩增供体、受体以及转化株的1Ax、1Bx、1Dx及1Ay、1By、1Dy型HMW-GS全基因 ,比较他们扩增产物的差异,结果表明,受体与转化株在HMW-GS基因1Ax、1Bx位点上的扩增产物差异不大,在HMW-GS基因位点1Dx 和y型基因上的扩增产物有较大差异,说明了受体在基因位点1Dx、1Ay、1By和1Dy上可能发生了多位点插入,可能由于这些基因位 点上的插入引起了转化株的高分子量谷蛋白亚基(HMW-GS)的变化,这就再一次为大赖草总DNA导入提供了直接的分子证据。虽然大 赖草总DNA导入提高了小麦蛋白质的含量,改变了HMW-GS的组成,部分改变了品质评分,但我们感到这些转化株在品质改良方面仍 有很大余地,如何更好地利用新疆大赖草蛋白质的优良特性及避免总DNA导入给转化株带来的不良性状,一个大赖草HMW-GS基因正 被分离及克隆,并准备将其利用于未来的品质育种当中。Total DNA of Leymus racemosus had been transformed into wheat through pollen tube pathway. Analysis of the repeated gene sequence had provided an elementary proof. Some variant cultivars with big ear were screened from their offsprings, and their protein content increased greatly from 13% (receptor)to 17%(transformed). The result from SDS-PAGE analysis of high-molecular-weight glutenin subunits(HMW- GS) respectively in donor(Xinjiang Leymus racemosus), receptor(spring wheat cultivar 761)and transformed wheats, showed the HMW-GS composition changed in the transformed plants. On the basis of the research, Four special pairs primers from wheat(T.aestivum L.) genome were used to amplify complete coding regions of HMW-GS genes on 1Ax、1Bx 、1Dx and 1Ay、1By、1Dy loci of donor、receptor and the big ear transformed cultivars. By comparing amplified PCR products. Faint differences were found among receptor and transformed cultivar's 1Ax、1Bx PCR amplifed products and apparent differences on those of 1Dx、y-typePCR product. We gueseed that there may be some DNA inserts in 1Dx 、1By、1Dy loci resulted in the changes of the HMW-GS among transformed cultivars. This provides second direct molecular witness to the exogenous DNA introduction. Even though the transformed plants have higher protein content, changed HMW-GS composition, partially improved process quality, there still leave much work to improve quality. In order to make full use of the excellent property of Leymus racemosus protein and avoid the disadvantages introducced by total DNA transformation, a HMW-GS gene of Leymus racemosus was being isolated and cloned.
Resumo:
The correct assignment of high molecular weight glutenin subunit variants is a key task in wheat breeding. However, the traditional analysis by protein electrophoresis is sometimes difficult and not very precise. This work describes a novel DNA marker for the accurate discrimination between the Glu-B1 locus subunits Bx7 and Bx7*. The analysis of one hundred and forty two bread wheat cultivars from different countries has highlighted a great number of misclassifications in the literature that could lead to wrong conclusions in studies of the relationship between glutenin composition and wheat quality.
Resumo:
Both high- and low-molecular-weight glutenin subunits (LMW-GS) play the major role in determining the viscoelastic properties of wheat (Triticum aestivum L.) flour. To date there has been no clear correspondence between the amino acid sequences of LMW-GS derived from DNA sequencing and those of actual LMW-GS present in the endosperm. We have characterized a particular LMW-GS from hexaploid bread wheat, a major component of the glutenin polymer, which we call the 42K LMW-GS, and have isolated and sequenced the putative corresponding gene. Extensive amino acid sequences obtained directly for this 42K LMW-GS indicate correspondence between this protein and the putative corresponding gene. This subunit did not show a cysteine (Cys) at position 5, in contrast to what has frequently been reported for nucleotide-based sequences of LMW-GS. This Cys has been replaced by one occurring in the repeated-sequence domain, leaving the total number of Cys residues in the molecule the same as in various other LMW-GS. On the basis of the deduced amino acid sequence and literature-based assignment of disulfide linkages, a computer-generated molecular model of the 42K subunit was constructed.
Resumo:
The low molecular weight glutenin subunits (LMW-GS) are major components of the glutenin polymers which determine the elastomeric properties of wheat (Triticum aestivum L.) gluten and dough. They comprise a complex mixture of components and have proved to be difficult to purify for detailed characterisation. The mature LMW subunit proteins comprise two structural domains, with one domain consisting of repeated sequences based on short peptide motifs. DNA sequences encoding this domain and a whole subunit were expressed in Escherichia coli and the recombinant proteins purified. Detailed comparisons by spectroscopy (CD, FT-IR) and dynamic light scattering indicated that the repetitive and non-repetitive domains of the proteins formed different structures with the former having an extended conformation with an equilibrium between poly-L-proline II-like structure and type II’ b-turns, and the latter a more compact globular structure rich in a-helix. Although the structures of these two domains appear to form independently, dynamic light scattering of the whole subunit dissolved in trifluoroethanol(TFE) suggested that they interact, leading to a more compact conformation. These observations may have relevance to the role of the LMW-GS in gluten structure and functionality.
Resumo:
The rheological properties of fresh gluten in small amplitude oscillation in shear (SAOS) and creep recovery after short application of stress was related to the hearth breadbaking performance of wheat flours using the multivariate statistics partial least squares (PLS) regression. The picture was completed by dough mixing and extensional properties, flour protein size distribution determined by SE-HPLC, and high molecular weight glutenin subunit (HMW-GS) composition. The sample set comprised 20 wheat cultivars grown at two different levels of nitrogen fertilizer in one location. Flours yielding stiffer and more elastic glutens, with higher elastic and viscous moduli (G' and G") and lower tan 8 values in SAOS, gave doughs that were better able to retain their shape during proving and baking, resulting in breads of high form ratios. Creep recovery measurements after short application of stress showed that glutens from flours of good breadmaking quality had high relative elastic recovery. The nitrogen fertilizer level affected the protein size distribution by an increase in monomeric proteins (gliadins), which gave glutens of higher tan delta and flatter bread loaves (lower form ratio).
Resumo:
Baking and 2-g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2-g direct-drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW-GS] composition by SDS-PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R-2 values of 0.862-0.866. In particular, three new spring wheat strains (CHD 502a-c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10-min bandwidth.
Resumo:
The rheological properties of dough and gluten are important for end-use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small-deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G'], large negative loadings for tan delta and steady state compliance [J(e)(0)]), the presence of high molecular weight glutenin subunits (HMW-GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high-end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.
Resumo:
BACKGROUND The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. RESULTS The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. CONCLUSION Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperature
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
OBJECTIVE: Adiponectin has anti-atherogenic properties and low circulating adiponectin has been linked to coronary atherosclerosis. Yet, there is considerable evidence that the high-molecular weight (HMW) complex of adiponectin is the major active form of this adipokine. We therefore investigated whether HMW adiponectin is associated with the extent of coronary artery disease (CAD) in men. RESEARCH DESIGN AND METHODS: Associations among CAD, HMW adiponectin and the HMW/total-adiponectin ratio were assessed in 240 male patients undergoing elective coronary angiography. Total adiponectin and HMW adiponectin was measured by enzyme-linked immunosorbent assay and serum levels were correlated with defined coronary scores and established cardiovascular risk factors. RESULTS: We found significant inverse correlations between angiographic scores and HMW adiponectin [Extent Score (ES): r=-0.39; Gensini Score (GS): r=-0.35; and Severity Score (SS): r=-0.40, all P<0.001], and the HMW/total-adiponectin ratio (ES: r=-0.49; GS: r=-0.46; SS: r=-0.46; all P<0.001). Multivariable regression analyses revealed that HMW adiponectin and the HMW/total-adiponectin ratio were significantly associated with the extent of CAD (both P<0.001). ROC analyses demonstrated that the predictive value of HMW adiponectin and the HMW/total-adiponectin ratio for the extent of coronary atherosclerosis significantly exceeded that of total adiponectin (P<0.001, P=0.010, respectively). CONCLUSIONS: HMW adiponectin and the HMW/total-adiponectin ratio inversely correlate with the extent of CAD. HMW adiponectin in particular seems to be a better marker for CAD extent than total adiponectin.
Resumo:
High molecular weight dissolved organic matter (HMW-DOM) represents an important component of dissolved organic carbon (DOC) in seawater and fresh-waters. In this paper, we report measurements of stable carbon (delta(13)C) isotopic compositions in total lipid, total hydrolyzable amino acid (THAA), total carbohydrate (TCHO) and acid-insoluble "uncharacterized" organic fractions separated from fourteen HMW-DOM samples collected from four U.S. estuaries. In addition, C/N ratio, delta(13) C and stable nitrogen (delta(15)N) isotopic compositions were also measured for the bulk HMW-DOM samples. Our results indicate that TCHO and THAA are the dominant organic compound classes, contributing 33-46% and 13-20% of the organic carbon in HMW-DOM while total lipid accounts for only <2% of the organic carbon in the samples. In all samples. a significant fraction (35-49%) of HMW-DOM was included in the acid-insoluble fraction. Distinct differences in isotopic compositions exist among bulk samples, the compound classes and the acid-insoluble fractions. Values of delta(13)C and delta(15)N measured for bulk HMW-DOM varied from -22.1 to -30.1parts per thousand and 2.8 to 8.9parts per thousand, respectively and varied among the four estuaries studied as well. Among the Compound classes, TCHO was more enriched in C-13 (delta(13)C = -18.5 to -22.8parts per thousand) compared with THAA (delta(13)C = -20.0 to -29.6parts per thousand) and total lipid (delta(13)C = -25.7 to -30.7parts per thousand). The acid-insoluble organic fractions, in general, had depleted C-13 values (delta(13)C = -23.0 to -34.4parts per thousand). Our results indicate that the observed differences in both delta(13)C and delta(15)N were mainly due to the differences in sources of organic matter and nitrogen inputs to these estuaries in addition to the microbial processes responsible for isotopic fractionation among the compound classes. Both terrestrial sources and local sewage inputs contribute significantly to the HMW-DOM pool in the estuaries studied and thus had a strong influence on its isotopic signatures. Copyright (C) 2004 Elsevier Ltd.
Resumo:
High-molecular-weight dissolved organic matter (HMW-DOM, > 1,000 Daltons) is actively involved in the global biogeochemical cycling of many elements, but its carbon sources and detailed formation pathways are still not well understood. In this study, we measured bulk stable carbon and nitrogen isotopic ratios, lipid composition, and compound-specific carbon isotopic ratios of HMW-DOM samples collected from four U.S. estuaries (Boston Harbor/Massachusetts Bay, Delaware/Chesapeake Bay, San Diego Bay, and San Francisco Bay). Analytical results show (1) a fraction of HMW-DOM (lipid associated) in estuarine and coastal waters is derived from bacteria and phytoplankton; (2) this fraction of HMW-DOM is formed by various release processes of bacterial membrane components and bacterial reworking of phytoplankton-derived material; (3) this fraction of HMW-DOM is generally present in all samples from different coastal systems despite variable organic matter inputs and environmental conditions, suggesting an important bacterial role in HMW-DOM formation.
Resumo:
High molecular weight dissolved organic matter (HMW-DOM, > 1000 Da) represents a major fraction (> 30%) of dissolved organic carbon (DOC) in the ocean and thus plays an important role in the global biogeochemical cycling of carbon and many other elements. Its organic sources and formation mechanisms, however, are still not well understood especially in estuarine and coastal regions where multiple natural and anthropogenic sources contribute to total HMW-DOM. In this paper we report our measurements of natural radiocarbon (C-14) abundances and stable carbon isotope (C-13) compositions of the major biochemical compound classes: amino acids, carbohydrates and lipids separated from eight HMW-DOM samples collected from five US estuaries as part of our on-going study of sources, distribution and transport of chromophoric dissolved organic matter (CDOM) in estuarine and coastal waters. Distinct differences in both C-14 and C-13 values were found among the bulk HMW-DOM samples as well as the individual compound classes. Radiocarbon ages of the major compound classes varied by as much as 27,000 years in a single sample. The calculated average radiocarbon ages of the compound fractions of HMW-DOM indicate that the total lipid fraction is very "old", while the acid-insoluble fraction is slightly younger. Total amino acid and carbohydrate fractions, however, have relatively modern apparent C-14 ages. The significant variability in C-14 ages among the compound classes indicates not only multiple organic carbon sources but also different formation and turnover pathways controlling the cycling of different biochemical components of HMW-DOM in estuarine and coastal waters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Close relationships exist between presence of adiponectin (APN) within vascular tissue and expression of T-cadherin (T-cad) on vascular cells. APN and T-cad are also present in the circulation but here their relationships are unknown. This study investigates associations between circulating levels of high molecular weight APN (HMW-APN) and T-cad in a population comprising 66 women and 181 men with angiographically proven stable coronary artery disease (CAD). Plasma HMW-APN and T-cad were measured by ELISA and analysed for associations with baseline clinical characteristics and with each other. In multivariable analysis BMI and HDL were independently associated with HMW-APN in both genders, while diabetes and extent of coronary stenosis were independently associated with T-cad in males only. Regression analysis showed no significant association between HMW-APN and T-cad in the overall study population. However, there was a negative association between HMW-APN and T-cad (P=0.037) in a subgroup of young men (age <60 years, had no diabetes and no or 1-vessel CAD) which persisted after multivariable analysis with adjustment for all potentially influential variables (P=0.021). In the corresponding subgroup of women there was a positive association between HMW-APN and T-cad (P=0.013) which disappeared after adjustment for HDL. After exclusion of the young men, a positive association (P=0.008) between HMW-APN and T-cad was found for the remaining participants of the overall population which disappeared after adjustment for HDL and BMI. The existence of opposing correlations between circulating HMW-APN and T-cad in male and female patient populations underscores the necessity to consider gender as a confounding variable when evaluating biomarker potentials of APN and T-cad.