889 resultados para high salt intake
Resumo:
Salt sensitivity and insulin resistance are correlated with higher cardiovascular risk. There is no information about changes in salt sensitivity (SS) and insulin sensitivity (IS) after a chronic salt overload in humans. The aim of this study was to evaluate these parameters in the elderly. Seventeen volunteers aged 70.5 ± 5.9 years followed a low-salt diet (LSD) for 1 week and a high-salt diet (HSD) for 13 weeks. We evaluated SS after one week (HSD1) and after 13 weeks (HSD13), and subjects’ IS and lipids on their usual diet (UD) at HSD1, and at HSD13. Blood pressure (BP) was measured at each visit and ambulatory blood pressure monitoring (ABPM) was performed twice. SS was the same at HSD1 and HSD13. Systolic BP was lower on LSD than on UD (P = 0.01), HSD1 (P < 0.01) and HSD13 (P < 0.01). When systolic and diastolic BP were evaluated by ABPM, they were higher at HSD13 during the 24-h period (P = 0.03 and P < 0.01) and during the wakefulness period (P = 0.02 and P < 0.01) compared to the UD. Total cholesterol was higher (P = 0.04) at HSD13 than at HSD1. Glucose and homeostasis model assessment (HOMA) were lower at HSD1 (P = 0.02 and P = 0.01) than at HSD13. Concluding, the extension of HSD did not change the SS in an elderly group. The higher IS found at HSD1 did not persist after a longer HSD. A chronic HSD increased BP as assessed by ABPM.
Resumo:
Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.
Resumo:
Excessive salt intake increases the risk of developing hypertension and cardiovascular disease. Sodium intake remains high both in developed and emerging countries. The Swiss Federal Office of Public Health has ordered a national survey on the salt intake in Switzerland, realized in different centers. This article presents the results of the awareness of the Swiss population concerning the relationship between excessive salt intake and health. This survey reveals a lack of knowledge regarding the association between high salt intake and cardiovascular disease, the sodium content of usual food, and the recommended daily value of sodium intake. Strategies to reduce salt consumption need to be reinforced by collaborations between health authorities and health care professionals.
Resumo:
INTRODUCTION: High salt intake is a major risk factor related to many cardiovascular and renal diseases. World Action on Salt and Health is a newly formed coalition of heath professionals whose goal is to implement changes in salt consumption in their respective countries for the goal of reducing blood pressure. In the same vein, we have decided to study the amount of salt intake in Paraguay to determine if a relationship exists between salt intake and blood pressure. OBJECTIVE: A preliminary study was undertaken to determine salt intake in Paraguay and its relationship with blood pressure, in order to implement a national program to combat hypertension. METHODS: Cross-sectional, observational study of 72 students from various universities in Asuncion (age range 22-30 years). Sodium excretion in 24-hour urine samples and blood pressure were measured. Assuming a steady state, urinary sodium excretion was converted into grams of salt ingested per day. RESULTS: Only 7% of the 72 participants had a salt intake less than the recommended maximum of 5 g/day. Forty-six percent had a blood pressure between 120-139 mmHg and 3% had stage 1 hypertension. There was no significant relationship between sodium excretion and blood pressure. CONCLUSION: Salt intake and blood pressure were found to be significantly elevated in young adults in Paraguay and argues for the importance of instituting a national campaign to reduce salt intake in this society.
Resumo:
Sodium is the most abundant extracellular cation and therefore pivotal in determining fluid balance. At the beginning of life, a positive sodium balance is needed to grow. Newborns and preterm infants tend to lose sodium via their kidneys and therefore need adequate sodium intake. Among older children and adults, however, excessive salt intake leads to volume expansion and arterial hypertension. Children who are overweight, born preterm, or small for gestational age and African American children are at increased risk of developing high blood pressure due to a high salt intake because they are more likely to be salt sensitive. In the developed world, salt intake is generally above the recommended intake also among children. Although a positive sodium balance is needed for growth during the first year of life, in older children, a sodium-poor diet seems to have the same cardiovascular protective effects as among adults. This is relevant, since: (1) a blood pressure tracking phenomenon was recognized; (2) the development of taste preferences is important during childhood; and (3) salt intake is often associated with the consumption of sugar-sweetened beverages (predisposing children to weight gain).
Resumo:
Angiogenesis, under normal conditions, is a tightly regulated balance between pro- and antiangiogenic factors. The goal of this study was to investigate the mechanisms involved in the control of the skeletal muscle angiogenic response induced by electrical stimulation during the suppression of plasma renin activity (PRA) with a high-salt diet. Rats fed 0.4% or 4% salt diets were exposed to electrical stimulation for 7 days. The tibialis anterior ( TA) muscles from stimulated and unstimulated hindlimbs were removed and prepared for gene expression analysis, CD31-terminal deoxynucleotide transferase-mediated dUTP nick-end labeling ( TUNEL) double-staining assay, and Bcl-2 and Bax protein expression by Western blot. Rats fed a low-salt diet showed a dramatic angiogenesis response in the stimulated limb compared with the unstimulated limb. This angiogenesis response was significantly attenuated when rats were placed on a high-salt diet. Microarray analysis showed that in the stimulated limb of rats fed a low-salt diet many genes related to angiogenesis were upregulated. In contrast, in rats fed a high-salt diet most of the genes upregulated in the stimulated limb function in apoptosis and cell cycle arrest. Endothelial cell apoptosis, as analyzed by CD31-TUNEL staining, increased by fourfold in the stimulated limb compared with the unstimulated limb. There was also a 48% decrease in the Bcl-2-to-Bax ratio in stimulated compared with unstimulated limbs of rats fed a high-salt diet, confirming severe apoptosis. This study suggests that the increase in endothelial cell apoptosis in TA muscle might contribute to the attenuation of angiogenesis response observed in rats fed a high-salt diet.
Resumo:
La consommation actuelle de sel (chlorure de sodium) est très supérieure aux besoins physiologiques (1,5 g par jour, soit environ 550 mg par jour de sodium) dans la plupart des pays (> 8 g par jour). Les principales sources de sel sont les pains, les fromages, les produits dérivés de la viande et les plats précuisinés. En moyenne, une consommation élevée de sel est associée à une pression artérielle plus élevée. En Suisse, un adulte sur trois souffre d'hypertension artérielle. La moitié des accidents vasculaires cérébraux et des maladies cardiaques ischémiques sont attribuables à une pression artérielle trop élevée. L'Office fédéral de la santé publique conduit actuellement une stratégie visant à diminuer la consommation de sel dans la population suisse à moins de 5 g par jour sur le long terme (Salz Strategie 2008-2012). [Abstract] Current dietary salt (sodium chloride) intake largely exceeds physiological needs (about 1.5 g salt per day, or 550 mg sodium per day) in most countries (> 8 g salt per day). The main sources of dietar salt intake are breads, cheeses, products derived from meat and ready-to-eat meals. On average, a high-salt diet is associated with higher blood pressure levels. In Switzerland, one out of three adults suffers from arterial hypertension. Half of cerebrovascular events and ischaemic cardiac events are attributable to elevated blood pressure. The Swiss Federal Office of Public Health is currently running a strategy aiming at reducing dietary salt intake in the Swiss population to less than 5 g per day on the long run (Salz Strategie 2008-2012).
Resumo:
It has been recently shown that calcium channel blockers might have a protective effect on cardiac fibrogenesis induced by aldosterone. The objective of this study was to evaluate the protective effect of felodipine, a dihydropyridine calcium channel blocker, against heart and kidney damage caused by aldosterone-high sodium intake in uninephrectomized rats. Wistar rats were divided into three groups: CNEP (uninephrectomized + 1% NaCl in the drinking water, N = 9); ALDO (same as CNEP group plus continuous infusion of 0.75 µg/h aldosterone, N = 12); ALDOF (same as ALDO group plus 30 mg·kg-1·day-1 felodipine in the drinking water, N = 10). All results were compared with those of age-matched, untreated rats (CTL group, N = 10). After 6 weeks, tail cuff blood pressure was recorded and the rats were killed for histological analysis. Blood pressure (mmHg) was significantly elevated (P < 0.05) in ALDO (180 ± 20) and ALDOF (168 ± 13) compared to CTL (123 ± 12) and CNEP (134 ± 13). Heart damage (lesion scores - median and interquartile range) was 7.0 (5.5-8.0) in ALDO and was fully prevented in ALDOF (1.5; 1.0-2.0). Also, left ventricular collagen volume fraction (%) in ALDOF (2.9 ± 0.5) was similar to CTL (2.9 ± 0.5) and CNEP (3.4 ± 0.4) and decreased compared to ALDO (5.1 ± 1.6). Felodipine partially prevented kidney injury since the damage score for ALDOF (2.0; 2.0-3.0) was significantly decreased compared to ALDO (7.5; 4.0-10.5), although higher than CTL (null score). Felodipine has a protective effect on the myocardium and kidney as evidenced by decreased perivascular inflammation, myocardial necrosis and fibrosis.
Resumo:
Accumulating evidence has suggested that high salt and potassium might be associated with vascular function. The aim of this study was to investigate the effect of salt intake and potassium supplementation on brachial-ankle pulse wave velocity (PWV) in Chinese subjects. Forty-nine subjects (28-65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day NaCl), a high-salt diet for an additional 7 days (18.0 g/day NaCl), and a high-salt diet with potassium supplementation for a final 7 days (18.0 g/day NaCl+4.5 g/day KCl). Brachial-ankle PWV was measured at baseline and on the last day of each intervention. Blood pressure levels were significantly increased from the low-salt to high-salt diet, and decreased from the high-salt diet to high-salt plus potassium supplementation. Baseline brachial-ankle PWV in salt-sensitive subjects was significantly higher than in salt-resistant subjects. There was no significant change in brachial-ankle PWV among the 3 intervention periods in salt-sensitive, salt-resistant, or total subjects. No significant correlations were found between brachial-ankle PWV and 24-h sodium and potassium excretions. Our study indicates that dietary salt intake and potassium supplementation, at least in the short term, had no significant effect on brachial-ankle PWV in Chinese subjects.
Resumo:
Objective: This study investigated the effect of different sodium content diets on rat adipose tissue carbohydrate metabolism and insulin sensitivity. Methods and Procedures: Male Wistar rats were fed on normal- (0.5% Na+; NS), high- (3.12% Na+; HS), or low-sodium (0.06% Na+; LS) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail-cuff system. An intravenous insulin tolerance test (ivITT) was performed in fasted animals. At the end of each period, rats were killed and blood samples were collected for glucose and insulin determinations. The white adipose tissue (WAT) from abdominal and inguinal subcutaneous (SC) and periepididymal (PE) depots were weighed and processed for adipocyte isolation and measurement of in vitro rates of insulin-stimulated 2-deoxy-d-[H-3]-glucose uptake (2DGU) and conversion of -[U-C-14]-glucose into (CO2)-C-14. Results: After 6 weeks, HS diet significantly increased the BP, SC and PE WAT masses, PE adipocyte size, and plasma insulin concentration. The sodium dietary content did not influence the whole-body insulin sensitivity. A higher half-maximal effective insulin concentration (EC50) from the dose - response curve of 2DGU and an increase in the insulin-stimulated glucose oxidation rate were observed in the isolated PE adipocytes from HS rats. Discussion: The chronic salt overload enhanced the adipocyte insulin sensitivity for glucose uptake and the insulin-induced glucose metabolization, contributing to promote adipocyte hypertrophy and increase the mass of several adipose depots, particularly the PE fat pad.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aims: The goal of the current study was to evaluate the impact of maternal sodium intake during gestation on the systemic and renal renin-angiotensin-aldosterone-system (RAAS) of the adult offspring. Main methods: Female Wistar rats were fed high- (HSD-8.0% NaCl) or normal-sodium diets (NSD-1.3% NaCl) from 8 weeks of age until the delivery of their first litter. After birth, the offspring received NSD. Tail-cuff blood pressure (TcBP) was measured in the offspring between 6 and 12 weeks of age. At 12 weeks of age, the offspring were subjected to either one week of HSD or low sodium diet (LSD-0.1 6%NaCl) feeding to evaluate RAAS responsiveness or to acute saline overload to examine sodium excretory function. Plasma (PRA) and renal renin content (RRC), serum aldosterone (ALDO) levels, and renal cortical and medullary renin mRNA expression levels were evaluated at the end of the study. Key findings: TcBP was higher among dams fed HSD, but no TcBP differences were observed among the offspring. Male offspring, however, exhibited increased TcBP after one week of HSD feeding, and this effect was independent of maternal diet. Increased RAAS responsiveness to the HSD and LSD was also observed in male offspring. The baseline levels of PRA. ALDO, and cortical and medullary renin gene expression were lower but the RRC levels were higher among HSD-fed male offspring (HSDoff). Conversely, female HSDoff showed reduced sodium excretion 4 h after saline overload compared with female NSDoff. Significance: High maternal sodium intake is associated with gender-specific changes in RAAS responsiveness among adult offspring. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Objective: Enhanced sodium intake increases volume overload, oxidative stress and production of proinflammatory cytokines. In animal models, increased sodium intake favours ventricular dysfunction after myocardial infarction (MI). The aim of this study was to investigate, in human subjects presenting with ST-segment elevation MI (STEMI), the impact of sodium intake prior the coronary event. Methods: Consecutive patients (n = 372) admitted within the first 24 h of STEMI were classified by a food intake questionnaire as having a chronic daily intake of sodium higher (HS) or lower (LS) than 1.2 g in the last 90 days before MI. Plasma levels of 8-isoprostane, interleucin-2 (IL-2), tumour necrosis factor type alpha (TNF-alpha), C-reactive protein (CRP) and brain natriuretic peptide (BNP) were measured at admission and at the fifth day. Magnetic resonance imaging was performed immediately after discharge. Total mortality and recurrence of acute coronary events were investigated over 4 years of follow-up. Results: The decrease of 8-isoprostane was more prominent and the increase of IL-2, TNF-alpha and CRP less intense during the first 5 days in LS than in HS patients (p < 0.05). Sodium intake correlated with change in plasma BNP between admission and fifth day (r = 0.46; p < 0.0001). End-diastolic volumes of left atrium and left ventricle were greater in HS than in LS patients (p < 0.05). In the first 30 days after MI and up to 4 years afterwards, total mortality was higher in HS than in LS patients (p < 0.05). Conclusion: Excessive sodium intake increases oxidative stress, inflammatory response, myocardial stretching and dilatation, and short and long-term mortality after STEMI. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND: Early-life reduction in nephron number (uninephrectomy [UNX]) and chronic high salt (HS) intake increase the risk of hypertension and chronic kidney disease. Adenosine signaling via its different receptors has been implicated in modulating renal, cardiovascular, and metabolic functions as well as inflammatory processes; however, the specific role of the A3 receptor in cardiovascular diseases is not clear. In this study, gene-modified mice were used to investigate the hypothesis that lack of A3 signaling prevents the development of hypertension and attenuates renal and cardiovascular injuries following UNX in combination with HS (UNX-HS) in mice. METHODS AND RESULTS: Wild-type (A3 (+/+)) mice subjected to UNX-HS developed hypertension compared with controls (mean arterial pressure 106±3 versus 82±3 mm Hg; P<0.05) and displayed an impaired metabolic phenotype (eg, increased adiposity, reduced glucose tolerance, hyperinsulinemia). These changes were associated with both cardiac hypertrophy and fibrosis together with renal injuries and proteinuria. All of these pathological hallmarks were significantly attenuated in the A3 (-/-) mice. Mechanistically, absence of A3 receptors protected from UNX-HS-associated increase in renal NADPH oxidase activity and Nox2 expression. In addition, circulating cytokines including interleukins 1β, 6, 12, and 10 were increased in A3 (+/+) following UNX-HS, but these cytokines were already elevated in naïve A3 (-/-) mice and did not change following UNX-HS. CONCLUSIONS: Reduction in nephron number combined with chronic HS intake is associated with oxidative stress, chronic inflammation, and development of hypertension in mice. Absence of adenosine A3 receptor signaling was strongly protective in this novel mouse model of renal and cardiovascular disease.
Resumo:
Sucrose-fed rats, a model of metabolic syndrome, are characterized by insulin resistance, obesity, hypertension, and high plasma levels of triacylglycerols and angiotensin II (Ang II). However, whether tissue renin-angiotensin system (RAS) is altered in metabolic syndrome is unclear. To study this issue, food ad libitum and water (C) or 20% sucrose solution (SC) were given to adult male Wistar rats, for 30 days. Body weight (BW), blood pressure (BP), epididymal adipose tissue (EPI) mass, rate of in vivo fatty acid (FA) synthesis in EPI, circulating glucose, insulin, leptin, angiotensins I and II, triacylglycerols, and plasma renin (PRA) and angiotensin-converting enzyme (ACE) activities were evaluated. In kidneys and EPI, gene and protein expression of type 1 (AT(1)) and 2 (AT(2)) Ang II receptors, ACE, angiotensinogen (ACT) as well as protein expression of angiotensin-converting enzyme 2 (ACE2) were determined. In both tissues, Ang I, Ang II and Ang-(1-7) contents were also measured by HPLC. In SC rats higher BP, EPI mass, circulating triacylglycerols, insulin, leptin, PRA and, Ang II were found. In EPI, the rate of in vivo FA synthesis was associated with increased Ang-(1-7), protein expression of AT(1) and AT(2) receptors, ACE2, ACT, and gene expression of ACT although a reduction in ACE activity and in adipose Ang I and Ang II contents was observed. In kidneys, AT(1) and AT(2), ACE and ACT gene and protein expression as well as protein expression of ACE2 were unaltered while Ang II, Ang-(1-7) and ACE activity increased. These RAS component changes seem to be tissue specific and possibly are related to enhancement of FA synthesis, EPI mass and hypertension. (C) 2010 Elsevier B.V. All rights reserved.