865 resultados para high harmonics generation
Resumo:
An analytical study of the relativistic interaction of a linearly-polarized laser-field of w frequency with highly overdense plasma is presented. Very intense high harmonics are generated produced by relativistic mirrors effects due to the relativistic electron plasma oscillation. Also, in agreement with 1D Particle-In-Cell Simulations (PICS), the model self-consistently explains the transition between the sheath inverse bremsstrahlung (SIB) absorption regime and the J×B heating (responsible for the 2w electron bunches), as well as the mean electron energy.
Resumo:
A technique for enhanced generation of selected high harmonics in a gas medium, in a high ionization limit, is proposed in this paper. An aperiodically corrugated hollow-core fiber is employed to modulate the intensity of the fundamental laser pulse along the direction of propagation, resulting in multiple quasi-phase-matched high harmonic emissions at the cutoff region. Simulated annealing (SA) algorithm is applied for optimizing the aperiodic hollow-core fiber. Our simulation shows that the yield of selected harmonics is increased equally by up to 2 orders of magnitude compared with no modulation and this permits flexible control of the quasi-phase-matched emission of selected harmonics by appropriate corrugation. (c) 2007 Optical Society of America.
Resumo:
The generation of extremely bright coherent X-ray pulses in the femtosecond and attosecond regime is currently one of the most exciting frontiers of physics - allowing, for the first time, measurements with unprecedented temporal resolution(1-6). Harmonics from laser - solid target interactions have been identified as a means of achieving fields as high as the Schwinger limit(2,7) (E = 1.3 x 10(16) V m(-1)) and as a highly promising route to high-efficiency attosecond (10(-18) s) pulses(8) owing to their intrinsically phase-locked nature. The key steps to attain these goals are achieving high conversion efficiencies and a slow decay of harmonic efficiency to high orders by driving harmonic production to the relativistic limit(1). Here we present the first experimental demonstration of high harmonic generation in the relativistic limit, obtained on the Vulcan Petawatt laser(9). High conversion efficiencies (eta> 10(-6) per harmonic) and bright emission (> 10(22) photons s(-1) mm(-2) mrad(-2) (0.1% bandwidth)) are observed at wavelengths <4 nm ( the 'water-window' region of particular interest for bio-microscopy).
Resumo:
Harmonic generation from relativistically oscillating plasma surfaces formed during the interaction of high contrast lasers with solid-density targets has been shown to be an efficient source of extreme ultraviolet (XUV) and X-ray radiation. Recent work has demonstrated that the exceptional coherence properties of the driving laser can be mirrored in the emitted radiation, permitting diffraction limited performance and attosecond phase locking of the harmonic radiation. These unique properties may allow the coherent harmonic focusing (CHF) of high harmonics generated from solid density targets to intensities on the order of the Schwinger limit of 10(29) W cm(-2) with laser systems available in the near future [Phys. Rev. Lett. 93, 115002 (2004)] and thus pave the way for unique experiments exploring the nonlinear properties of vacuum on ultra-fast timescales. In this paper we investigate experimentally as well as numerically the prospect of focusing high harmonics under realistic experimental conditions and demonstrate, using particle in cell (PIC) simulations, that precise control of the wavefronts and thus the focusability of the generated harmonics is possible with pre-shaped targets.
Resumo:
The generation of the third and fourth harmonics from the interaction of a 1 ps, ultraviolet (UV), krypton fluoride (KrF) laser with a solid surface is investigated. The conversion efficiency is seen to increase linearly with I lambda(2), with a transition from specular harmonic emission to emission into 2 pi steradians occurring between 10(15) and 10(16) W cm(-2) mu m(2). The diffuse emission is strongly dependent on the incidence angle of the laser, with the peak in emission at around 30 degrees being consistent with measurements for resonance absorption. Finally, the conversion efficiencies are found to be in agreement with particle-in-cell (PIC) simulations including appropriate density scalelengths. (C) 1998 Elsevier Science B.V.
Resumo:
We experimentally demonstrate a new regime of high-order harmonic generation by relativistic-irradiance lasers in gas jet targets. Bright harmonics with both odd and even orders, generated by linearly as well as circularly polarized pulses, are emitted in the forward direction, while the base harmonic frequency is downshifted. A 9 TW laser generates harmonics up to 360 eV, within the 'water window' spectral region. With a 120 TW laser producing 40 uJ/sr per harmonic at 120 eV, we demonstrate the photon number scalability. The observed harmonics cannot be explained by previously suggested scenarios. A novel high-order harmonics generation mechanism [T. Zh. Esirkepov et al., AIP Proceedings, this volume], which explains our experimental findings, is based on the phenomena inherent in the relativistic laser - underdense plasma interactions (self-focusing, cavity evacuation, and bow wave generation), mathematical catastrophe theory which explains formation of electron density singularities (cusps), and collective radiation due to nonlinear oscillations of a compact charge.
Resumo:
Attosecond science is enabled by the ability to convert femtosecond near-infrared laser light into coherent harmonics in the extreme ultraviolet spectral range. While attosecond sources have been utilized in experiments that have not demanded high intensities, substantially higher photon flux would provide a natural link to the next significant experimental breakthrough. Numerical simulations of dual-gas high harmonic generation indicate that the output in the cutoff spectral region can be selectively enhanced without disturbing the single-atom gating mechanism. Here, we summarize the results of these simulations and present first experimental findings to support these predictions. (c) 2012 Optical Society of America
Resumo:
High-harmonic generation (HHG) by nonlinear interaction of intense laser pulses with gases or plasma surfaces is the most prominent way of creating highly coherent extreme ultraviolet (EUV/XUV) pulses. In the last years, several scientific applications have been found which require the measurement of the polarization of the harmonic radiation. We present a broadband XUV polarimeter based on multiple Fresnel reflections providing an extinction rate of 5-25 for 17-45 nm which is particularly suited for surface harmonics. The device has first been tested at a gas harmonic source providing linearly polarized XUV radiation. In a further experiment using HHG from plasma surfaces, the XUV polarimeter allowed a polarization measurement of high harmonic radiation from plasma surfaces for the first time which reveals a linear polarization state as predicted for our generation parameters. The generation and control of intense polarized XUV pulses-together with the availability of broadband polarizers in the XUV-open the way for a series of new experiments. For instance, dichroism in the XUV, elliptically polarized harmonics from aligned molecules, or the selection rules of relativistic surface harmonics can be studied with the broadband XUV polarimeter.
Resumo:
In this study, the process of the resonant second harmonics generation of the submillimeter (SM), which is of interest for design of the semiconductor frequency multipliers is evaluated. Particularly, the possibility to use the semiconductor superlattice-metal structures as an effective second harmonics generator is demonstrated.
Resumo:
A novel AC driving configuration is proposed for biased semiconductor superlattices, in which the THz driving is provided by an intense bichromatic cw laser in the visible light range. The frequency difference between two components of the laser is resonant with the Bloch oscillation. Thus, multi-photon processes mediated by the conduction (valence) band states lead to dynamical delocalization and localization of the valence (conduction) electrons, and to the formation and collapse of quasi-minibands. Thus, driven Bloch oscillators are predicted to generate persistent THz emission and harmonics of the dipole field, which are tolerant of the exciton and the relaxation effects.