905 resultados para hidden markov model (HMM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid increase in the deployment of CCTV systems has led to a greater demand for algorithms that are able to process incoming video feeds. These algorithms are designed to extract information of interest for human operators. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned `normal' model. Many researchers have tried various sets of features to train different learning models to detect abnormal behaviour in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM) to model the normal activities of people. The outliers of the model with insufficient likelihood are identified as abnormal activities. Our Semi-2D HMM is designed to model both the temporal and spatial causalities of the crowd behaviour by assuming the current state of the Hidden Markov Model depends not only on the previous state in the temporal direction, but also on the previous states of the adjacent spatial locations. Two different HMMs are trained to model both the vertical and horizontal spatial causal information. Location features, flow features and optical flow textures are used as the features for the model. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of estimating pseudobearing rate information of an airborne target based on measurements from a vision sensor is considered. Novel image speed and heading angle estimators are presented that exploit image morphology, hidden Markov model (HMM) filtering, and relative entropy rate (RER) concepts to allow pseudobearing rate information to be determined before (or whilst) the target track is being estimated from vision information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an independent evaluation of six recent hidden Markov model (HMM) genefinders. Each was tested on the new dataset (FSH298), the results of which showed no dramatic improvement over the genefinders tested five years ago. In addition, we introduce a comprehensive taxonomy of predicted exons and classify each resulting exon accordingly. These results are useful in measuring (with finer granularity) the effects of changes in a genefinder. We present an analysis of these results and identify four patterns of inaccuracy common in all HMM-based results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the problem of tracking an object and predicting the object's future trajectory in a wide-area environment, with complex spatial layout and the use of multiple sensors/cameras. To solve this problem, there is a need for representing the dynamic and noisy data in the tracking tasks, and dealing with them at different levels of detail. We employ the Abstract Hidden Markov Models (AHMM), an extension of the well-known Hidden Markov Model (HMM) and a special type of Dynamic Probabilistic Network (DPN), as our underlying representation framework. The AHMM allows us to explicitly encode the hierarchy of connected spatial locations, making it scalable to the size of the environment being modeled. We describe an application for tracking human movement in an office-like spatial layout where the AHMM is used to track and predict the evolution of object trajectories at different levels of detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In building a surveillance system for monitoring people behaviours, it is important to understand the typical patterns of people's movement in the environment. This task is difficult when dealing with high-level behaviours. The flat model such as the hidden Markov model (HMM) is inefficient in differentiating between signatures of such behaviours. This paper examines structure learning for high-level behaviours using the hierarchical hidden Markov model (HHMM).We propose a two-phase learning algorithm in which the parameters of the behaviours at low levels are estimated first and then the structures and parameters of the behaviours at high levels are learned from multi-camera training data. Our algorithm is then evaluated using data from a real environment, demonstrating the robustness of the learned structure in recognising people's behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic variations in channel behavior is considered in transmission power control design for cellular radio systems. It is well known that power control increases system capacity, improves Quality of Service (QoS), and reduces multiuser interference. In this paper, an adaptive power control design based on the identification of the underlying pathloss dynamics of the fading channel is presented. Formulating power control decisions based on the measured received power levels allows modeling the fading channel pathloss dynamics in terms of a Hidden Markov Model (HMM). Applying the online HMM identification algorithm enables accurate estimation of the real pathloss ensuring efficient performance of the suggested power control scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In neuroscience, the extracellular actions potentials of neurons are the most important signals, which are called spikes. However, a single extracellular electrode can capture spikes from more than one neuron. Spike sorting is an important task to diagnose various neural activities. The more we can understand neurons the more we can cure more neural diseases. The process of sorting these spikes is typically made in some steps which are detection, feature extraction and clustering. In this paper we propose to use the Mel-frequency cepstral coefficients (MFCC) to extract spike features associated with Hidden Markov model (HMM) in the clustering step. Our results show that using MFCC features can differentiate between spikes more clearly than the other feature extraction methods, and also using HMM as a clustering algorithm also yields a better sorting accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a Digital Performing Agent to be able to perform live with a human dancer, it would be useful for the agent to be able to contextualize the movement the dancer is performing and to have a suitable movement vocabulary with which to contribute to the performance. In this paper we will discuss our research into the use of Artificial Neural Networks (ANN) as a means of allowing a software agent to learn a shared vocabulary of movement from a dancer. The agent is able to use the learnt movements to form an internal representation of what the dancer is performing, allowing it to follow the dancer, generate movement sequences based on the dancer's current movement and dance independently of the dancer using a shared movement vocabulary. By combining the ANN with a Hidden Markov Model (HMM) the agent is able to recognize short full body movement phrases and respond when the dancer performs these phrases. We consider the relationship between the dancer and agent as a means of supporting the agent's learning and performance, rather than developing the agent's capability in a self-contained fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel relative entropy rate (RER) based approach for multiple HMM (MHMM) approximation of a class of discrete-time uncertain processes. Under different uncertainty assumptions, the model design problem is posed either as a min-max optimisation problem or stochastic minimisation problem on the RER between joint laws describing the state and output processes (rather than the more usual RER between output processes). A suitable filter is proposed for which performance results are established which bound conditional mean estimation performance and show that estimation performance improves as the RER is reduced. These filter consistency and convergence bounds are the first results characterising multiple HMM approximation performance and suggest that joint RER concepts provide a useful model selection criteria. The proposed model design process and MHMM filter are demonstrated on an important image processing dim-target detection problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many fisheries worldwide have adopted vessel monitoring systems (VMS) for compliance purposes. An added benefit of these systems is that they collect a large amount of data on vessel locations at very fine spatial and temporal scales. This data can provide a wealth of information for stock assessment, research, and management. However, since most VMS implementations record vessel location at set time intervals with no regard to vessel activity, some methodology is required to determine which data records correspond to fishing activity. This paper describes a probabilistic approach, based on hidden Markov models (HMMs), to determine vessel activity. A HMM provides a natural framework for the problem and, by definition, models the intrinsic temporal correlation of the data. The paper describes the general approach that was developed and presents an example of this approach applied to the Queensland trawl fishery off the coast of eastern Australia. Finally, a simulation experiment is presented that compares the misallocation rates of the HMM approach with other approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel and effective lip-based biometric identification approach with the Discrete Hidden Markov Model Kernel (DHMMK) is developed. Lips are described by shape features (both geometrical and sequential) on two different grid layouts: rectangular and polar. These features are then specifically modeled by a DHMMK, and learnt by a support vector machine classifier. Our experiments are carried out in a ten-fold cross validation fashion on three different datasets, GPDS-ULPGC Face Dataset, PIE Face Dataset and RaFD Face Dataset. Results show that our approach has achieved an average classification accuracy of 99.8%, 97.13%, and 98.10%, using only two training images per class, on these three datasets, respectively. Our comparative studies further show that the DHMMK achieved a 53% improvement against the baseline HMM approach. The comparative ROC curves also confirm the efficacy of the proposed lip contour based biometrics learned by DHMMK. We also show that the performance of linear and RBF SVM is comparable under the frame work of DHMMK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directly modeling the inherent hierarchy and shared structures of human behaviors, we present an application of the hierarchical hidden Markov model (HHMM) for the problem of activity recognition. We argue that to robustly model and recognize complex human activities, it is crucial to exploit both the natural hierarchical decomposition and shared semantics embedded in the movement trajectories. To this end, we propose the use of the HHMM, a rich stochastic model that has been recently extended to handle shared structures, for representing and recognizing a set of complex indoor activities. Furthermore, in the need of real-time recognition, we propose a Rao-Blackwellised particle filter (RBPF) that efficiently computes the filtering distribution at a constant time complexity for each new observation arrival. The main contributions of this paper lie in the application of the shared-structure HHMM, the estimation of the model's parameters at all levels simultaneously, and a construction of an RBPF approximate inference scheme. The experimental results in a real-world environment have confirmed our belief that directly modeling shared structures not only reduces computational cost, but also improves recognition accuracy when compared with the tree HHMM and the flat HMM.