76 resultados para hibernation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brown adipose tissue and liver of hibernating, arousing and euthermic individuals of the dormouse Muscardinus avellanarius were studies using ultrastructural cytochemistry and immunocytochemistry with the aim to investigate possible fine structural modifications of the cell nucleus during the seasonal cycle. The general morphology of brown adipocyte and hepatocyte nuclei was similar in the three experimental groups. However, three nuclear structural constituents were identified only in hibernating individuals: coiled bodies (CBs) and amorphous bodies (ABs) were observed in hepatocytes and, together with bundles of nucleoplasmic fibrils (NF), were present in brown adipocytes of hibernating dormice. In arousing animals only some structural constituents suggestive of poorly structured CBs were found. The latter showed the same immunocytochemical features as CBs of hibernating individuals, suggesting that they are disappearing CBs. A possible involvement of CBs in storing and/or processing RNA which must be rapidly and abundantly released upon arousal is discussed. ABs similarly to CBs contain RNA and nucleoplasmic ribonucleoproteins (RNPs) and could also be involved in mRNA pathways. NF do not contain nucleic acids or RNPs and seem to be composed of protein-aceous material; their functional role in the nuclear metabolism of hibernating brown adipocytes remains unclear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six muscardins vivant en liberté, munis d'une marque radioactive, ont été étudiés durant un hiver dans leur habitat naturel. L'un d'eux était muni d'un radio-émetteur en position intrapéritonéale permettant de mesurer la température corporelle (Tc) au nid et sur des sites de nourrissage. Tous les nids d'hibernation (n=17) étaient situés sur le sol, dans la litière ou dans un gazon. Un nid d'été a été utilisé occasionnellement durant une période clémente. Entre décembre et avril, les périodes de torpeur de 2 à 27 jours (xmoy= 10.8 j). Les périodes de nomothérmie sans quitter le nid duraient 50 à 210 min (xmoy=105 min). Durant les réveils spontanés, la température corporelle était de 36.7 ± 0.4°C, correspondant à une température corporelle moyenne diurne durant le sommeil (36.8 ± 0.3°C). En captivité, la Tc durant la nuit équivalait à 37.6 ± 0.6°C , tandis que la température en activité, mesurée dans la nature, était de 38.5 ± 0.7°C. Durant la torpeur, la Tc était très proche de la température du sol (∆T < 1°C); quand la température descendait à -3°, la Tc a été maintenue entre -0.4 et -0.8°C. Les nids d'hiver situés en surface du sol et sous une couverture de neige restent durant une grande partie de l'hibernation près de 0 ºC, ce qui est probablement proche de la température à laquelle M. avellanarius présente des dépenses énergétiques minimales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: During hibernation the kidney is in a hypothermic condition where renal blood flow is minimal and urine production is much reduced. Periodical arousal from hibernation is associated with kidney reperfusion at increasing body temperature, and restored urine production rate. METHODS: To assess the degree of structural preservation during such extreme conditions, the kidney cortex was investigated by means of electron microscopy in the dormouse Muscardinus avellanarius during winter hibernation, arousal from hibernation and the summer active period. RESULTS: Results show that the fine structure of the kidney cortex is well preserved during hibernation. In the renal corpuscle, a sign of slight lesion was the focal presence of oedematous endothelial cells and/or podocytes. Proximal convoluted tubule cells showed fully preserved ultrastructure and polarity, and hypertrophic apical endocytic apparatus. Structural changes were associated with increased plasma electrolytes, creatinine and urea nitrogen, and proteinuria. During the process of arousal the fine structure of the kidney cortex was also well maintained. CONCLUSION: These results demonstrate that dormice are able to fully preserve kidney cortex structure under extreme conditions resembling e.g. severe ischaemia or hypothermic organ storage for transplantation, and reperfusion. Elucidation of the mechanisms involved in such a natural model of organ preservation could be relevant to human medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adrenocortical cell nuclei of the dormouse Muscardinus avellanarius were investigated by electron microscopic immunocytochemistry in hibernating, arousing and euthermic individuals. While the basic structural constituents of the cell nucleus did not significantly modify in the three groups, novel structural components were found in nuclei of hibernating dormice. Lattice-like bodies (LBs), clustered granules (CGs), fibrogranular material (FGM) and granules associated with bundles of nucleoplasmic fibrils (NF) all contained ribonucleoproteins (RNPs), as shown by labeling with anti-snRNP (small nuclear RNP), anti-m3G-capped RNA and anti-hnRNP (heterogeneous nuclear RNP) antibodies. Moreover, the FGM also showed immunoreactivity for the proliferation associated nuclear antigen (PANA) and the non-snRNP splicing factor SC-35. All these nuclear structural components disappeared early during arousal and were not found in euthermic animals. These novel RNP-containing structures, which have not been observed in other tissues investigated so far in the same animal model, could represent storage and/or processing sites for pre-mRNA during the extreme metabolic condition of hibernation, to be quickly released upon arousal. NFs, which had been sometimes found devoid of associated granules in nuclei of brown adipose tissue from hi-bernating dormice, were present in much higher amounts in adrenocortical cell nuclei; they do not contain RNPs and their role remains to be elucidated. The possible roles of these structures are discussed in the frame of current knowledge of morpho-functional relationships in the cell nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White-nose syndrome (WNS) is an emerging infectious disease of hibernating bats linked to the death of an estimated 5.7 million or more bats in the northeastern United States and Canada. White-nose syndrome is caused by the cold-loving fungus Pseudogymnoascus destructans (Pd), which invades the skin of the muzzles, ears, and wings of hibernating bats. Previous work has shown that WNS-affected bats arouse to euthermic or near euthermic temperatures during hibernation significantly more frequently than normal and that these too-frequent arousals are tied to severity of infection and death date. We quantified the behavior of bats during these arousal bouts to understand better the causes and consequences of these arousals. We hypothesized that WNS-affected bats would display increased levels of activity (especially grooming) during their arousal bouts from hibernation compared to WNS-unaffected bats. Behavior of both affected and unaffected hibernating bats in captivity was monitored from December 2010 to March 2011 using temperature-sensitive dataloggers attached to the backs of bats and infrared motion-sensitive cameras. The WNS-affected bats exhibited significantly higher rates of grooming, relative to unaffected bats, at the expense of time that would otherwise be spent inactive. Increased self-grooming may be related to the presence of the fungus. Elevated activity levels in affected bats likely increase energetic stress, whereas the loss of rest (inactive periods when aroused from torpor) may jeopardize the ability of a bat to reestablish homeostasis in a number of physiologic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emerging disease White-Nose Syndrome in hibernating bat populations across the United States has increased the need to understand the physiological benefits and consequences of hibernation and the effects on immunological responsiveness. Hibernation has been well-documented in many mammalian species, yet few studies have examined hibernation immunology in bats, particularly with respect to normal immunological patterns. In order to characterize the levels of circulating leukocytes and plasma immunoglobulins in euthermic and hibernating female big brown bats (Eptesicus fuscus), blood smear differential leukocyte counts and total immunoglobulin assays were performed for each group using blood samples from the active and hibernation seasons. Hibernation patterns – torpor and arousals from torpor – were determined by placing temperature-sensitive dataloggers on the backs of bats assigned to the hibernating group during the hibernation season. Data indicate that the ratio of circulating neutrophils to lymphocytes is lower in bats assigned to the euthermic group during the hibernation season than in bats assigned to the hibernation group during the hibernation period, but that relative immunoglobulin levels do not differ during the hibernation season, regardless of whether bats were active or hibernating. Neither bats assigned to the hibernation group nor bats assigned to the euthermic group demonstrate a significant change in the ratio of circulating neutrophils and lymphocytes between their active and hibernating seasons. Bats assigned to the hibernation group were also observed to arouse from torpor somewhat synchronously. These results suggest that innate and adaptive cell levels are maintained, at best, in hibernating bats that are not immunologically challenged and that bats that remain euthermic during the hibernation season are able to continually regulate their levels of neutrophils and lymphocytes and therefore their innate and adaptive immune system responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disuse osteoporosis is a problem for people with spinal cord injury or stroke, patients confined to bed rest, and astronauts exposed to microgravity. Unlike most mammals however, bears have been shown to prevent bone loss during hibernation, a seasonal period of disuse. Similarly, studies in ground squirrels indicate preservation of whole bone strength during hibernation, though evidence suggests there may be some increased osteocytic osteolysis. Uncovering the mechanism by which these animals prevent bone loss during hibernation could lead to an improved treatment for osteoporosis in humans. Marmots are a good animal model for these studies because they are small enough to easily house in an animal facility yet still utilize intracortical remodeling like humans and bears, and unlike smaller rodents like squirrels. Marmots preserve bone mechanical and microstructural properties during hibernation. Bone mechanical and geometrical properties are not diminished in post-hibernation samples compared to pre-hibernation samples. Mineral content, measured by ash fraction, was higher in post-hibernation samples (p = 0.0003). Haversian porosity as well as remodeling cavity density were not different (p > 0.38) between pre- and post-hibernation samples. Similarly, average lacunar area, lacunar density, and lacunar porosity were all lower (p < 0.0001) in post-hibernation samples. Trabecular thickness was larger in posthibernation samples (p = 0.0058). Bone volume fraction was not different between groups, but approached significance (p = 0.0725). Further studies in marmots and other hibernators could help uncover the mechanism that allows hibernators to prevent disuse osteoporosis during hibernation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, bone specific alkaline phosphatase (BSALP), a marker of osteoblast activity, and tartrate resistant acid phosphatase (TRACP), a marker of osteoclast number, were quantified in the serum of hibernating and active black bears. BSALP and TRACP decreased during hibernation, suggesting a balanced reduction in bone turnover. This decrease in BSALP and TRACP were correlated positively to serum adiponectin and inversely to serum neuropeptide Y, suggesting a possible role of these hormones in suppressing bone turnover during hibernation. Osteocalcin (OCN) and undercarboxylated OCN increased dramatically in the serum of hibernating bears. These increases were inversely correlated with adiponectin, glucose, and serotonin, suggesting that OCN may have a unique role in energy homeostasis during hibernation. Finally, MC3T3-E1 osteoblasts were cultured in the serum from active and hibernating bears, and seasonal cell responses were quantified. Cells cultured in serum from hibernating bears had a reduced caspase-3/7 response, and more living cells, after apoptotic threat. The caspase-3/7 response was positively correlated to serum adiponectin and to gene expression of OCN and Runx2, suggesting that reduced caspase-3/7 activity may be related to the reduced differentiation potential of osteoblasts in hibernation serum, and that adiponectin is a potential effector hormone. In summary, the activities of osteoblasts and osteoclasts are reduced during hibernation in bears. This reduced turnover is due, in part, to hormonal control. Further study of potential effectors adiponectin and neuropeptide Y may provide insight into the biological mechanism through which bears maintain bone throughout hibernation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein synthesis (PS) has been considered essential to sustain mammalian life, yet was found to be virtually arrested for weeks in brain and other organs of the hibernating ground squirrel, Spermophilus tridecemlineatus. PS, in vivo, was below the limit of autoradiographic detection in brain sections and, in brain extracts, was determined to be 0.04% of the average rate from active squirrels. Further, it was reduced 3-fold in cell-free extracts from hibernating brain at 37°C, eliminating hypothermia as the only cause for protein synthesis inhibition (active, 0.47 ± 0.08 pmol/mg protein per min; hibernator, 0.16 ± 0.05 pmol/mg protein per min, P < 0.001). PS suppression involved blocks of initiation and elongation, and its onset coincided with the early transition phase into hibernation. An increased monosome peak with moderate ribosomal disaggregation in polysome profiles and the greatly increased phosphorylation of eIF2α are both consistent with an initiation block in hibernators. The elongation block was demonstrated by a 3-fold increase in ribosomal mean transit times in cell-free extracts from hibernators (active, 2.4 ± 0.7 min; hibernator, 7.1 ± 1.4 min, P < 0.001). No abnormalities of ribosomal function or mRNA levels were detected. These findings implicate suppression of PS as a component of the regulated shutdown of cellular function that permits hibernating ground squirrels to tolerate “trickle” blood flow and reduced substrate and oxygen availability. Further study of the factors that control these phenomena may lead to identification of the molecular mechanisms that regulate this state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hibernation patterns were monitored continuously for 2.5 years in female squirrels that were neurologically intact or in which the hypothalamic suprachiasmatic nucleus (SCN) was completely ablated (SCNx). The number of hibernation bouts in SCNx squirrels increased by 159%, total hibernation time increased by 58%, and periodic arousals from hibernation were 47% longer in SCNx than in control squirrels; the duration of individual torpor bouts was 2 days shorter and far more variable in SCNx than in control animals. Some SCNx squirrels cycled through bouts of torpor continuously for nearly 2 years. The SCN appears to be part of the mechanism that controls the duration of the hibernation season and the temporal structure of individual torpor bouts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data from diverse studies endorse ideas that short term torpor and hibernation are expressions of ancient characters. In evolutionary terms, their basic mechanisms are probably plesiomorphic (= ancestral/primitive) and physiologically similar. This contrasts with the alternate view that they are apomorphic (= derived, specialized), arising independently in many taxa from homeothermic ancestry by numerous apparent convergences. This paper explores some of the implications of accepting the plesiomorphic interpretation. Hibernation is, of course, a complex phenomenon that has undergone variations and refinements in different mammalian lineages. The argument is not that hibernation in total is a plesiomorphic character, but that it is built upon fundamental processes that are. Taking this view provides a framework for research that emphasizes the value of comparative studies, particularly of reptiles and birds. Studies of reptiles, for example, might unravel the mystery about periodic arousals. A plesiomorphic framework also explains the most extreme examples of hibernation as derived specializations from ancestry in which heterothermy is more about energy management than escape from cold. It cautions against using low body temperature (Tb) alone to diagnose torpor, emphasizes the need to distinguish between constitutional eurythermy (plesiomorphic) and constitutional stenothermy (apomorphic), and leads to a parsimonious theory about the evolution of endothermy. The paper proposes that brown adipose tissue (BAT) is apomorphic within eutheria and highlights the conundrum posed by the occurrence of both nonshivering thermogenesis (NST) and rapid arousal from hibernation in noneutherian mammals that lack BAT and uncoupling protein 1 (UCP1). It endorses the likely existence of a different, ancient and widespread mechanism for regulatory NST in mammals.