960 resultados para heteroscedastic effects model
Resumo:
In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are entered into group-level statistical tests such as the t-test. In the current work, we argue that the by-participant analysis, regardless of the accuracy measurements used, would produce a substantial inflation of Type-1 error rates, when a random item effect is present. A mixed-effects model is proposed as a way to effectively address the issue, and our simulation studies examining Type-1 error rates indeed showed superior performance of mixed-effects model analysis as compared to the conventional by-participant analysis. We also present real data applications to illustrate further strengths of mixed-effects model analysis. Our findings imply that caution is needed when using the by-participant analysis, and recommend the mixed-effects model analysis.
Resumo:
The dual-effects model of social control not only assumes that social control leads to better health practices but also arouses psychological distress. However, findings are inconsistent. The present study advances the current literature by examining social control from a dyadic perspective in the context of smoking. In addition, the study examines whether control, continuous smoking abstinence, and affect are differentially related for men and women. Before and three weeks after a self-set quit attempt, we examined 106 smokers (77 men, mean age: 40.67, average number of cigarettes smoked per day: 16.59 [SD=8.52, range=1-40] at baseline and 5.27 [SD=6.97, range=0-40] at follow-up) and their nonsmoking heterosexual partners, assessing received and provided control, continuous abstinence, and affect. With regard to smoker's affective reactions, partner's provided control was related to an increase in positive and to a decrease in negative affect, but only for female smokers. Moreover, the greater the discrepancy between smoker received and partner's provided control was the more positive affect increased and the more negative affect decreased, but again only for female smokers. These findings demonstrate that female smokers' well-being was raised over time if they were not aware of the control attempts of their nonsmoking partners, indicating positive effects of invisible social control. This study's results emphasize the importance of applying a dyadic perspective and taking gender differences in the dual-effects model of social control into account.
Resumo:
Supervisor support, peer support and transfer motivation have been identified as important predictors for training transfer. Transfer motivation is supposed to mediate the support–training transfer relationship. Especially after team training interventions that include all team members (i.e., intact-team training), individual perception of these factors might be shared among team members. However, an integration of the team level in the training transfer process is rare, yet still needed. Analyzing 194 employees from 34 teams in the context of intact-team training interventions, we found similar relationships and processes at both levels of analysis: Social support enhances transfer motivation at the individual and team levels. Furthermore, motivation to transfer increases training transfer and serves as a connecting mechanism in the social support–training transfer link. The results underline the importance of (1) considering multiple levels in theories and research about the training transfer process and (2) ensuring the practice of individual-directed support and a shared, supportive climate within teams.
Resumo:
Despite many researches on development in education and psychology, not often is the methodology tested with real data. A major barrier to test the growth model is that the design of study includes repeated observations and the nature of the growth is nonlinear. The repeat measurements on a nonlinear model require sophisticated statistical methods. In this study, we present mixed effects model in a negative exponential curve to describe the development of children's reading skills. This model can describe the nature of the growth on children's reading skills and account for intra-individual and inter-individual variation. We also apply simple techniques including cross-validation, regression, and graphical methods to determine the most appropriate curve for data, to find efficient initial values of parameters, and to select potential covariates. We illustrate with an example that motivated this research: a longitudinal study of academic skills from grade 1 to grade 12 in Connecticut public schools. ^
Resumo:
There is an alternative model of the 1-way ANOVA called the 'random effects' model or ‘nested’ design in which the objective is not to test specific effects but to estimate the degree of variation of a particular measurement and to compare different sources of variation that influence the measurement in space and/or time. The most important statistics from a random effects model are the components of variance which estimate the variance associated with each of the sources of variation influencing a measurement. The nested design is particularly useful in preliminary experiments designed to estimate different sources of variation and in the planning of appropriate sampling strategies.
Resumo:
In Statnote 9, we described a one-way analysis of variance (ANOVA) ‘random effects’ model in which the objective was to estimate the degree of variation of a particular measurement and to compare different sources of variation in space and time. The illustrative scenario involved the role of computer keyboards in a University communal computer laboratory as a possible source of microbial contamination of the hands. The study estimated the aerobic colony count of ten selected keyboards with samples taken from two keys per keyboard determined at 9am and 5pm. This type of design is often referred to as a ‘nested’ or ‘hierarchical’ design and the ANOVA estimated the degree of variation: (1) between keyboards, (2) between keys within a keyboard, and (3) between sample times within a key. An alternative to this design is a 'fixed effects' model in which the objective is not to measure sources of variation per se but to estimate differences between specific groups or treatments, which are regarded as 'fixed' or discrete effects. This statnote describes two scenarios utilizing this type of analysis: (1) measuring the degree of bacterial contamination on 2p coins collected from three types of business property, viz., a butcher’s shop, a sandwich shop, and a newsagent and (2) the effectiveness of drugs in the treatment of a fungal eye infection.
Resumo:
2010 Mathematics Subject Classification: 62J99.
Resumo:
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision. Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes. The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
Resumo:
The objective of this work was to compare the relative efficiency of initial selection and genetic parameter estimation, using augmented blocks design (ABD), augmented blocks twice replicated design (DABD) and group of randomised block design experiments with common treatments (ERBCT), by simulations, considering fixed effect model and mixed model with regular treatment effects as random. For the simulations, eight different conditions (scenarios) were considered. From the 600 simulations in each scenario, the mean percentage selection coincidence, the Pearsons´s correlation estimates between adjusted means for the fixed effects model, and the heritability estimates for the mixed model were evaluated. DABD and ERBCT were very similar in their comparisons and slightly superior to ABD. Considering the initial stages of selection in a plant breeding program, ABD is a good alternative for selecting superior genotypes, although none of the designs had been effective to estimate heritability in all the different scenarios evaluated.
Resumo:
Motivation: The clustering of gene profiles across some experimental conditions of interest contributes significantly to the elucidation of unknown gene function, the validation of gene discoveries and the interpretation of biological processes. However, this clustering problem is not straightforward as the profiles of the genes are not all independently distributed and the expression levels may have been obtained from an experimental design involving replicated arrays. Ignoring the dependence between the gene profiles and the structure of the replicated data can result in important sources of variability in the experiments being overlooked in the analysis, with the consequent possibility of misleading inferences being made. We propose a random-effects model that provides a unified approach to the clustering of genes with correlated expression levels measured in a wide variety of experimental situations. Our model is an extension of the normal mixture model to account for the correlations between the gene profiles and to enable covariate information to be incorporated into the clustering process. Hence the model is applicable to longitudinal studies with or without replication, for example, time-course experiments by using time as a covariate, and to cross-sectional experiments by using categorical covariates to represent the different experimental classes. Results: We show that our random-effects model can be fitted by maximum likelihood via the EM algorithm for which the E(expectation) and M(maximization) steps can be implemented in closed form. Hence our model can be fitted deterministically without the need for time-consuming Monte Carlo approximations. The effectiveness of our model-based procedure for the clustering of correlated gene profiles is demonstrated on three real datasets, representing typical microarray experimental designs, covering time-course, repeated-measurement and cross-sectional data. In these examples, relevant clusters of the genes are obtained, which are supported by existing gene-function annotation. A synthetic dataset is considered too.
Resumo:
In many occupational safety interventions, the objective is to reduce the injury incidence as well as the mean claims cost once injury has occurred. The claims cost data within a period typically contain a large proportion of zero observations (no claim). The distribution thus comprises a point mass at 0 mixed with a non-degenerate parametric component. Essentially, the likelihood function can be factorized into two orthogonal components. These two components relate respectively to the effect of covariates on the incidence of claims and the magnitude of claims, given that claims are made. Furthermore, the longitudinal nature of the intervention inherently imposes some correlation among the observations. This paper introduces a zero-augmented gamma random effects model for analysing longitudinal data with many zeros. Adopting the generalized linear mixed model (GLMM) approach reduces the original problem to the fitting of two independent GLMMs. The method is applied to evaluate the effectiveness of a workplace risk assessment teams program, trialled within the cleaning services of a Western Australian public hospital.