838 resultados para heterogeneous delays


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of loadsharing algorithms for heterogeneous distributed systems is investigated by simulation. The systems considered are networks of workstations (nodes) which differ in processing power. Two parameters are proposed for characterising system heterogeneity, namely the variance and skew of the distribution of processing power among the network nodes. A variety of networks are investigated, with the same number of nodes and total processing power, but with the processing power distributed differently among the nodes. Two loadsharing algorithms are evaluated, at overall system loadings of 50% and 90%, using job response time as the performance metric. Comparison is made with the ideal situation of ‘perfect sharing’, where it is assumed that the communication delays are zero and that complete knowledge is available about job lengths and the loading at the different nodes, so that an arriving job can be sent to the node where it will be completed in the shortest time. The algorithms studied are based on those already in use for homogeneous networks, but were adapted to take account of system heterogeneity. Both algorithms take into account the differences in the processing powers of the nodes in their location policies, but differ in the extent to which they ‘discriminate’ against the slower nodes. It is seen that the relative performance of the two is strongly influenced by the system utilisation and the distribution of processing power among the nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global connectivity is on the verge of becoming a reality to provide high-speed, high-quality, and reliable communication channels for mobile devices at anytime, anywhere in the world. In a heterogeneous wireless environment, one of the key ingredients to provide efficient and ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS), are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, call-dropping and blocking probabilities. This research presents a novel approach for of a Multi Attribute Decision Making (MADM) model based on an integrated fuzzy approach for target network selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Housing affordability is gaining increasing prominence in the Australian socioeconomic landscape, despite strong economic growth and prosperity. It is a major consideration for any new development. However, it is multi-dimensional, has many facets, is complex and interwoven. One factor widely held to impact housing affordability is holding costs. Although it is only one contributor, the nature and extent of its impact requires clarification. It is certainly more multifarious than simple calculation of the interest or opportunity cost of land holding. For example, preliminary analysis suggests that even small shifts in the regulatory assessment period can significantly affect housing affordability. Other costs associated with “holding” also impact housing affordability, however these costs cannot always be easily identified. Nevertheless it can be said that ultimately the real impact is felt by those whom can least afford it - new home buyers whom can be relatively easily pushed into the realms of un-affordability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research presented in this thesis addresses inherent problems in signaturebased intrusion detection systems (IDSs) operating in heterogeneous environments. The research proposes a solution to address the difficulties associated with multistep attack scenario specification and detection for such environments. The research has focused on two distinct problems: the representation of events derived from heterogeneous sources and multi-step attack specification and detection. The first part of the research investigates the application of an event abstraction model to event logs collected from a heterogeneous environment. The event abstraction model comprises a hierarchy of events derived from different log sources such as system audit data, application logs, captured network traffic, and intrusion detection system alerts. Unlike existing event abstraction models where low-level information may be discarded during the abstraction process, the event abstraction model presented in this work preserves all low-level information as well as providing high-level information in the form of abstract events. The event abstraction model presented in this work was designed independently of any particular IDS and thus may be used by any IDS, intrusion forensic tools, or monitoring tools. The second part of the research investigates the use of unification for multi-step attack scenario specification and detection. Multi-step attack scenarios are hard to specify and detect as they often involve the correlation of events from multiple sources which may be affected by time uncertainty. The unification algorithm provides a simple and straightforward scenario matching mechanism by using variable instantiation where variables represent events as defined in the event abstraction model. The third part of the research looks into the solution to address time uncertainty. Clock synchronisation is crucial for detecting multi-step attack scenarios which involve logs from multiple hosts. Issues involving time uncertainty have been largely neglected by intrusion detection research. The system presented in this research introduces two techniques for addressing time uncertainty issues: clock skew compensation and clock drift modelling using linear regression. An off-line IDS prototype for detecting multi-step attacks has been implemented. The prototype comprises two modules: implementation of the abstract event system architecture (AESA) and of the scenario detection module. The scenario detection module implements our signature language developed based on the Python programming language syntax and the unification-based scenario detection engine. The prototype has been evaluated using a publicly available dataset of real attack traffic and event logs and a synthetic dataset. The distinct features of the public dataset are the fact that it contains multi-step attacks which involve multiple hosts with clock skew and clock drift. These features allow us to demonstrate the application and the advantages of the contributions of this research. All instances of multi-step attacks in the dataset have been correctly identified even though there exists a significant clock skew and drift in the dataset. Future work identified by this research would be to develop a refined unification algorithm suitable for processing streams of events to enable an on-line detection. In terms of time uncertainty, identified future work would be to develop mechanisms which allows automatic clock skew and clock drift identification and correction. The immediate application of the research presented in this thesis is the framework of an off-line IDS which processes events from heterogeneous sources using abstraction and which can detect multi-step attack scenarios which may involve time uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the preliminary results in establishing a strategy for predicting Zenith Tropospheric Delay (ZTD) and relative ZTD (rZTD) between Continuous Operating Reference Stations (CORS) in near real-time. It is anticipated that the predicted ZTD or rZTD can assist the network-based Real-Time Kinematic (RTK) performance over long inter-station distances, ultimately, enabling a cost effective method of delivering precise positioning services to sparsely populated regional areas, such as Queensland. This research firstly investigates two ZTD solutions: 1) the post-processed IGS ZTD solution and 2) the near Real-Time ZTD solution. The near Real-Time solution is obtained through the GNSS processing software package (Bernese) that has been deployed for this project. The predictability of the near Real-Time Bernese solution is analyzed and compared to the post-processed IGS solution where it acts as the benchmark solution. The predictability analyses were conducted with various prediction time of 15, 30, 45, and 60 minutes to determine the error with respect to timeliness. The predictability of ZTD and relative ZTD is determined (or characterized) by using the previously estimated ZTD as the predicted ZTD of current epoch. This research has shown that both the ZTD and relative ZTD predicted errors are random in nature; the STD grows from a few millimeters to sub-centimeters while the predicted delay interval ranges from 15 to 60 minutes. Additionally, the RZTD predictability shows very little dependency on the length of tested baselines of up to 1000 kilometers. Finally, the comparison of near Real-Time Bernese solution with IGS solution has shown a slight degradation in the prediction accuracy. The less accurate NRT solution has an STD error of 1cm within the delay of 50 minutes. However, some larger errors of up to 10cm are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the findings of an investigation into the rate-limiting mechanism for the heterogeneous burning in oxygen under normal gravity and microgravity of cylindrical iron rods. The original objective of the work was to determine why the observed melting rate for burning 3.2-mm diameter iron rods is significantly higher in microgravity than in normal gravity. This work, however, also provided fundamental insight into the rate-limiting mechanism for heterogeneous burning. The paper includes a summary of normal-gravity and microgravity experimental results, heat transfer analysis and post-test microanalysis of quenched samples. These results are then used to show that heat transfer across the solid/liquid interface is the rate-limiting mechanism for melting and burning, limited by the interfacial surface area between the molten drop and solid rod. In normal gravity, the work improves the understanding of trends reported during standard flammability testing for metallic materials, such as variations in melting rates between test specimens with the same cross-sectional area but different crosssectional shape. The work also provides insight into the effects of configuration and orientation, leading to an improved application of standard test results in the design of oxygen system components. For microgravity applications, the work enables the development of improved methods for lower cost metallic material flammability testing programs. In these ways, the work provides fundamental insight into the heterogeneous burning process and contributes to improved fire safety for oxygen systems in applications involving both normal-gravity and microgravity environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a proposed qualitative framework to discuss the heterogeneous burning of metallic materials, through parameters and factors that influence the melting rate of the solid metallic fuel (either in a standard test or in service). During burning, the melting rate is related to the burning rate and is therefore an important parameter for describing and understanding the burning process, especially since the melting rate is commonly recorded during standard flammability testing for metallic materials and is incorporated into many relative flammability ranking schemes. However, whilst the factors that influence melting rate (such as oxygen pressure or specimen diameter) have been well characterized, there is a need for an improved understanding of how these parameters interact as part of the overall melting and burning of the system. Proposed here is the ‘Melting Rate Triangle’, which aims to provide this focus through a conceptual framework for understanding how the melting rate (of solid fuel) is determined and regulated during heterogeneous burning. In the paper, the proposed conceptual model is shown to be both (a) consistent with known trends and previously observed results, and (b)capable of being expanded to incorporate new data. Also shown are examples of how the Melting Rate Triangle can improve the interpretation of flammability test results. Slusser and Miller previously published an ‘Extended Fire Triangle’ as a useful conceptual model of ignition and the factors affecting ignition, providing industry with a framework for discussion. In this paper it is shown that a ‘Melting Rate Triangle’ provides a similar qualitative framework for burning, leading to an improved understanding of the factors affecting fire propagation and extinguishment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique is described whereby micro-ATR/FTIR imaging can be used to follow polymer degradation reactions in situ in real time. The internal reflection element (IRE) assembly is removed from the ATR objective and polymer is solvent cast directly onto the IRE surface. The polymer is then subjected to degradation conditions and molecular structural changes monitored by periodically replacing the IRE assembly back in the ATR objective and collecting spectra which can be used to construct images. This approach has the benefit that the same part of the sample is always studied, and that contact by pressure which might damage the polymer surface is not required. The technique is demonstrated using the polymer Topas which was degraded by exposure to UVC light in air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural disasters and deliberate, willful damage to telecommunication infrastructure can result in a loss of critical voice and data services. This loss of service hinders the ability for efficient emergency response and can cause delays leading to loss of life. Current mobile devices are generally tied to one network operator. When a disaster is of significant impact, that network operator cannot be relied upon to provide service and coverage levels that would normally exist. While some operators have agreements with other operators to share resources (such as network roaming) these agreements are contractual in nature and cannot be activated quickly in an emergency. This paper introduces Fourth Generation (4G) wireless networks. 4G networks are highly mobile and heterogeneous, which makes 4G networks highly resilient in times of disaster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a ∑GIi/D/1/∞ queue with heterogeneous input/output slot times. This queueing model can be regarded as an extension of the ordinary GI/D/1/∞ model. For this ∑GIi/D/1/∞ queue, we assume that several input streams arrive at the system according to different slot times. In other words, there are different slot times for different input/output processes in the queueing model. The queueing model can therefore be used for an ATM multiplexer with heterogeneous input/output link capacities. Several cases of the queueing model are discussed to reflect different relationships among the input/output link capacities of an ATM multiplexer. In the queueing analysis, two approaches: the Markov model and the probability generating function technique, are adopted to develop the queue length distributions observed at different epochs. This model is particularly useful in the performance analysis of ATM multiplexers with heterogeneous input/output link capacities.