1000 resultados para hepatic health
Resumo:
The aim of this work was to evaluate the performance and the liver structure health of Nile tilapia hormonally masculinized or nonmasculinized, reared in cages with two protein levels. Two groups of Nile tilapia of Thai lineage (total 2,400), with 127 g initial average weight, were distributed in a completely randomized design with four treatments, in a 2x2 factorial arrangement, corresponding to the groups of hormonally masculinized or nonmasculinized fish, and to diet protein level of 28 or 32% of crude protein, with three replicates. After 115 days feeding, there was no interaction between the factors for final weight, weight gain, feed conversion rate, final length and survival. There was no difference between hormonally masculinized and nonmasculinized fish for final weight, weight gain, and survival, which shows the possibility of their production in cages, without the need of hormonal masculinization. Crude protein at 32% in the diet enables a better performance for both groups. Histological changes in the liver - such as increased cell volume, disruption of the cord-like arrangements, and increase of vesicles in the hepatocytes - are found in hormonally masculinized fish, and are more pronounced in fish fed 32% crude protein in the diet.
Resumo:
Background: Obesity, oxidative stress and inflammation, by triggering insulin resistance, may contribute to the accumulation of hepatic fat, and this accumulation by lipotoxicity can lead the organ to fail. Because obesity is growing at an alarming rate and, worryingly, in a precocious way, the present study aimed to investigate the effects of moderate physical training performed from childhood to adulthood on liver fat metabolism in rats. Methods. Twenty rats that were 28days old were divided into two groups: control (C) and trained (T). The C Group was kept in cages without exercise, and the T group was submitted to swimming exercise for 1hour/day, 5days/week from 28 to 90days of age (8weeks) at 80% of the anaerobic threshold determined by the lactate minimum test. At the end of the experiment, the body weight gain, insulin sensitivity (glucose disappearance rate during the insulin tolerance test), concentrations of free fatty acids (FFA) and triglycerides (TG) and hepatic lipogenic rate were analyzed. For the statistical analysis, the Student t-test was used with the level of significance preset at 5%. Results: The T group showed lower body weight gain, FFA concentrations, fat accumulation, hepatic lipogenic rate and insulin resistance. Conclusion: The regular practice of moderate physical exercise from childhood can contribute to the reduction of obesity and insulin resistance and help prevent the development of accumulation of hepatic fat in adulthood. © 2013de Moura et al; licensee BioMed Central Ltd.
Resumo:
BACKGROUND: Due to advances in operative methods and perioperative care, mortality and morbidity following major hepatic resection have decreased substantially, making long-term quality of life (QoL) an increasingly prominent issue. We evaluated whether postoperative diagnosis was associated with long-term QoL and health in patients requiring hepatic surgery for benign or malignant disease. METHODS: QoL was evaluated using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 and the liver-specific QLQ-LMC21 module. RESULTS: Between 2002 and 2006, 249 patients underwent hepatic surgery for malignant (76%) and benign (24%) conditions. One hundred thirty-five patients were available for QoL analysis after a mean of 26.5 months. There was no statistical difference in global QoL scores between patients with malignant and benign diseases (p = 0.367). Neither the extent of the resection (> or =2 segments vs. <2 segments; p = 0.975; OR = 0.988; 95% CI = 0.461-2.119) nor patient age had a significant influence on overall QoL (p = 0.092). CONCLUSIONS: These results indicate that long-term QoL for patients who underwent liver resection for malignant disease is quite good and that a poor clinical prognosis does not seem to correlate with a poor QoL.
Resumo:
Background and Aims: Zomepirac (ZP), a non-steroidal anti-inflammatory drug (NSAID), has been reported to cause immune-mediated liver injury. In vivo, ZP is metabolized to a chemically reactive acyl glucuronide conjugate (ZAG) which can undergo covalent adduct formation with proteins. Such acyl glucuronide-derived drug-protein adducts may be important in the development of immune and toxic responses caused by NSAID. We have shown using immunoabsorptions that the 110 kDa CD26 (dipeptidyl peptidase IV) is one of the hepatic target proteins for covalent modification by ZAG. In the present study, a CD26-deficient mouse strain was used to examine protein targets for covalent modification by ZP/metabolites in the liver. Methods and Results: The CD26-deficient phenotype was confirmed by immunohistochemistry, flow cytometry analysis, RT-PCR, enzyme assay and immunoblotting. Moreover, by using monoclonal antibody immunoblots, CD26 was not detected in the livers of ZP-treated CD26-deficient mice. Immunoblots using a polyclonal antiserum to ZP on liver from ZP-treated mice showed three major sizes of protein bands, in the 70, 110 and 140 kDa regions. Most, but not all, of the anti-ZP immunoreactivity in the 110 kDa region was absent from ZP-treated CD26-deficient mice. Conclusion: These data definitively showed that CD26 was a component of ZP-modified proteins in vivo. In addition, the data suggested that at least one other protein of approximately 110 kDa was modified by covalent adduct formation with ZAG. (C) 2002 Blackwell Science Asia Pty Ltd.
Resumo:
Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2 mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2 mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24 h, The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity, Conversely, pro-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Echinococcosis/hydatidosis is common in societies where agriculture and livestock are frequent, and represents a public health problem. The therapeutic management depends on the cyst's characteristics, the patient, and surgical contraindications. Endoscopic retrograde cholangiopancreatography is a valuable tool in the diagnosis and treatment of complicated hepatic hydatid disease. Ultrasonography is a useful diagnostic, therapeutic and follow-up tool. The authors report a case of a 56 years old patient who was diagnosed with a hepatic hydatid cyst in the IVa/VIII segments, describe the therapeutic options and 50 months of disease-free follow-up.
Resumo:
Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.
Resumo:
Antibiotics used by general practitioners frequently appear in adverse-event reports of drug-induced hepatotoxicity. Most cases are idiosyncratic (the adverse reaction cannot be predicted from the drug's pharmacological profile or from pre-clinical toxicology tests) and occur via an immunological reaction or in response to the presence of hepatotoxic metabolites. With the exception of trovafloxacin and telithromycin (now severely restricted), hepatotoxicity crude incidence remains globally low but variable. Thus, amoxicillin/clavulanate and co-trimoxazole, as well as flucloxacillin, cause hepatotoxic reactions at rates that make them visible in general practice (cases are often isolated, may have a delayed onset, sometimes appear only after cessation of therapy and can produce an array of hepatic lesions that mirror hepatobiliary disease, making causality often difficult to establish). Conversely, hepatotoxic reactions related to macrolides, tetracyclines and fluoroquinolones (in that order, from high to low) are much rarer, and are identifiable only through large-scale studies or worldwide pharmacovigilance reporting. For antibiotics specifically used for tuberculosis, adverse effects range from asymptomatic increases in liver enzymes to acute hepatitis and fulminant hepatic failure. Yet, it is difficult to single out individual drugs, as treatment always entails associations. Patients at risk are mainly those with previous experience of hepatotoxic reaction to antibiotics, the aged or those with impaired hepatic function in the absence of close monitoring, making it important to carefully balance potential risks with expected benefits in primary care. Pharmacogenetic testing using the new genome-wide association studies approach holds promise for better understanding the mechanism(s) underlying hepatotoxicity.
Resumo:
Plant-based whole foods provide thousands of bioactive metabolites to the human diet that reduce the risk of developing chronic diseases. β-Caryophyllene (CAR) is a common constituent of the essential oil of numerous plants, vegetables, fruits and medicinal herbs, and has been used as a flavouring agent since the 1930 s. Here, we report the antioxidant activity of CAR, its protective effect on liver fibrosis and its inhibitory capacity on hepatic stellate cell (HSC) activation. CAR was tested for the inhibition of lipid peroxidation and as a free radical scavenger. CAR had higher inhibitory capacity on lipid peroxidation than probucol, α-humulene and α-tocopherol. Also, CAR showed high scavenging activities against hydroxyl radical and superoxide anion. The activity of 5-lipoxygenase, an enzyme that actively participates in fibrogenesis, was significantly inhibited by CAR. Carbon tetrachloride-treated rats received CAR at 2, 20 and 200 mg/kg. CAR significantly improved liver structure, and reduced fibrosis and the expression of Col1a1, Tgfb1 and Timp1 genes. Oxidative stress was used to establish a model of HSC activation with overproduction of extracellular matrix proteins. CAR (1 and 10 μm) increased cell viability and significantly reduced the expression of fibrotic marker genes. CAR, a sesquiterpene present in numerous plants and foods, is as a natural antioxidant that reduces carbon tetrachloride-mediated liver fibrosis and inhibits hepatic cell activation.