947 resultados para heat-related illness
Resumo:
The climatic conditions of tropical and subtropical regions within Australia present, at times, extreme risk of physical activity induced heat illness. Many administrators and teachers in school settings are aware of the general risks of heat related illness. In the absence of reliable information applied at the local level, there is a risk that inappropriate decisions may be made concerning school events that incorporate opportunities to be physically active. Such events may be prematurely cancelled resulting in the loss of necessary time for physical activity. Under high or extremely high risk conditions however, the absence of appropriate modifications or continuation could place the health of students, staff and other parties at risk. School staff and other key stakeholders should understand the mechanisms of escalating risk and be supported to undertake action to reduce the level of risk through appropriate policies, procedures, resources and action plans.
Resumo:
Background: Extreme heat is a leading weather-related cause of illness and death in many locations across the globe, including subtropical Australia. The possibility of increasingly frequent and severe heat waves warrants continued efforts to reduce this health burden, which could be accomplished by targeting intervention measures toward the most vulnerable communities. Objectives: We sought to quantify spatial variability in heat-related morbidity in Brisbane, Australia, to highlight regions of the city with the greatest risk. We also aimed to find area-level social and environmental determinants of high risk within Brisbane. Methods: We used a series of hierarchical Bayesian models to examine city-wide and intracity associations between temperature and morbidity using a 2007–2011 time series of geographically referenced hospital admissions data. The models accounted for long-term time trends, seasonality, and day of week and holiday effects. Results: On average, a 10°C increase in daily maximum temperature during the summer was associated with a 7.2% increase in hospital admissions (95% CI: 4.7, 9.8%) on the following day. Positive statistically significant relationships between admissions and temperature were found for 16 of the city’s 158 areas; negative relationships were found for 5 areas. High-risk areas were associated with a lack of high income earners and higher population density. Conclusions: Geographically targeted public health strategies for extreme heat may be effective in Brisbane, because morbidity risk was found to be spatially variable. Emergency responders, health officials, and city planners could focus on short- and long-term intervention measures that reach communities in the city with lower incomes and higher population densities, including reduction of urban heat island effects.
Resumo:
Background: There is no global definition of a heatwave because local acclimatisation and adaptation influence the impact of extreme heat. Even at a local level there can be multiple heatwave definitions, based on varying temperature levels or time periods. We investigated the relationship between heatwaves and health outcomes using ten different heatwave definitions in Brisbane, Australia. ---------- Methodology/Principal Findings: We used daily data on climate, air pollution, and emergency hospital admissions in Brisbane between January 1996 and December 2005; and mortality between January 1996 and November 2004. Case-crossover analyses were used to assess the relationship between each of the ten heatwave definitions and health outcomes. During heatwaves there was a statistically significant increase in emergency hospital admissions for all ten definitions, with odds ratios ranging from 1.03 to 1.18. A statistically significant increase in the odds ratios of mortality was also found for eight definitions. The size of the heat-related impact varied between definitions.---------- Conclusions/Significance Even a small change in the heatwave definition had an appreciable effect on the estimated health impact. It is important to identify an appropriate definition of heatwave locally and to understand its health effects in order to develop appropriate public health intervention strategies to prevent and mitigate the impact of heatwaves.
Resumo:
Background: Heat-related mortality is a matter of great public health concern, especially in the light of climate change. Although many studies have found associations between high temperatures and mortality, more research is needed to project the future impacts of climate change on heat-related mortality. Objectives: We conducted a systematic review of research and methods for projecting future heat-related mortality under climate change scenarios. Data sources and extraction: A literature search was conducted in August 2010, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English up to 2010. Data synthesis: The review included 14 studies that fulfilled the inclusion criteria. Most projections showed that climate change would result in a substantial increase in heat-related mortality. Projecting heat-related mortality requires understanding of the historical temperature-mortality relationships, and consideration of the future changes in climate, population and acclimatization. Further research is needed to provide a stronger theoretical framework for projections, including a better understanding of socio-economic development, adaptation strategies, land-use patterns, air pollution and mortality displacement. Conclusions: Scenario-based projection research will meaningfully contribute to assessing and managing the potential impacts of climate change on heat-related mortality.
Resumo:
Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals' recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as
Resumo:
This study was conducted to explore the effect of different autoclave heating times (30, 60 and 90 min) on fatty acids supply and molecular stability in Brassica carinata seed. Multivariate spectral analyses and correlation analyses were also carried out in our study. The results showed that autoclaving treatments significantly decreased the total fatty acids content in a linear fashion in B. carinata seed as heating time increased. Reduced concentrations were also observed in C18:3n3, C20:1, C22:1n9, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), omega 3 (ω-3) and 9 (ω-9) fatty acids. Correspondingly, the heated seeds showed dramatic reductions in all the peak intensities within lipid-related spectral regions. Results from agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA) indicated that the raw oilseed had completely different structural make-up from the autoclaved seeds in both CH3 and CH2 asymmetric and symmetric stretching region (ca. 2999–2800 cm−1) and lipid ester Cdouble bond; length as m-dashO carbonyl region (ca. 1787–1706 cm−1). However, the oilseeds heated for 30, 60 and 90 min were not grouped into separate classes or ellipses in all the lipid-related regions, indicating that there still exhibited similarities in lipid biopolymer conformations among autoclaved B. carinata seeds. Moreover, strong correlations between spectral information and fatty acid compositions observed in our study could imply that lipid-related spectral parameters might have a potential to predict some fatty acids content in oilseed samples, i.e. B. carinata. However, more data from large sample size and diverse range would be necessary and helpful to draw up a final conclusion.
Resumo:
Previous assessments of the impacts of climate change on heat-related mortality use the "delta method" to create temperature projection time series that are applied to temperature-mortality models to estimate future mortality impacts. The delta method means that climate model bias in the modelled present does not influence the temperature projection time series and impacts. However, the delta method assumes that climate change will result only in a change in the mean temperature but there is evidence that there will also be changes in the variability of temperature with climate change. The aim of this paper is to demonstrate the importance of considering changes in temperature variability with climate change in impacts assessments of future heat-related mortality. We investigate future heatrelated mortality impacts in six cities (Boston, Budapest, Dallas, Lisbon, London and Sydney) by applying temperature projections from the UK Meteorological Office HadCM3 climate model to the temperature-mortality models constructed and validated in Part 1. We investigate the impacts for four cases based on various combinations of mean and variability changes in temperature with climate change. The results demonstrate that higher mortality is attributed to increases in the mean and variability of temperature with climate change rather than with the change in mean temperature alone. This has implications for interpreting existing impacts estimates that have used the delta method. We present a novel method for the creation of temperature projection time series that includes changes in the mean and variability of temperature with climate change and is not influenced by climate model bias in the modelled present. The method should be useful for future impacts assessments. Few studies consider the implications that the limitations of the climate model may have on the heatrelated mortality impacts. Here, we demonstrate the importance of considering this by conducting an evaluation of the daily and extreme temperatures from HadCM3, which demonstrates that the estimates of future heat-related mortality for Dallas and Lisbon may be overestimated due to positive climate model bias. Likewise, estimates for Boston and London may be underestimated due to negative climate model bias. Finally, we briefly consider uncertainties in the impacts associated with greenhouse gas emissions and acclimatisation. The uncertainties in the mortality impacts due to different emissions scenarios of greenhouse gases in the future varied considerably by location. Allowing for acclimatisation to an extra 2°C in mean temperatures reduced future heat-related mortality by approximately half that of no acclimatisation in each city.
Resumo:
The aim of this paper is to demonstrate the importance of changing temperature variability with climate change in assessments of future heat-related mortality. Previous studies have only considered changes in the mean temperature. Here we present estimates of heat-related mortality resulting from climate change for six cities: Boston, Budapest, Dallas, Lisbon, London and Sydney. They are based on climate change scenarios for the 2080s (2070-2099) and the temperature-mortality (t-m) models constructed and validated in Gosling et al. (2007). We propose a novel methodology for assessing the impacts of climate change on heat-related mortality that considers both changes in the mean and variability of the temperature distribution.
Resumo:
Heat waves are expected to increase in frequency and magnitude with climate change. The first part of a study to produce projections of the effect of future climate change on heat-related mortality is presented. Separate city-specific empirical statistical models that quantify significant relationships between summer daily maximum temperature (T max) and daily heat-related deaths are constructed from historical data for six cities: Boston, Budapest, Dallas, Lisbon, London, and Sydney. ‘Threshold temperatures’ above which heat-related deaths begin to occur are identified. The results demonstrate significantly lower thresholds in ‘cooler’ cities exhibiting lower mean summer temperatures than in ‘warmer’ cities exhibiting higher mean summer temperatures. Analysis of individual ‘heat waves’ illustrates that a greater proportion of mortality is due to mortality displacement in cities with less sensitive temperature–mortality relationships than in those with more sensitive relationships, and that mortality displacement is no longer a feature more than 12 days after the end of the heat wave. Validation techniques through residual and correlation analyses of modelled and observed values and comparisons with other studies indicate that the observed temperature–mortality relationships are represented well by each of the models. The models can therefore be used with confidence to examine future heat-related deaths under various climate change scenarios for the respective cities (presented in Part 2).
Resumo:
"October 2005."
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
We examined the variation in association between high temperatures and elderly mortality (age ≥ 75 years) from year to year in 83 US cities between 1987 and 2000. We used a Poisson regression model and decomposed the mortality risk for high temperatures into: a “main effect” due to high temperatures using lagged non-linear function, and an “added effect” due to consecutive high temperature days. We pooled yearly effects across both regional and national levels. The high temperature effects (both main and added effects) on elderly mortality varied greatly from year to year. In every city there was at least one year where higher temperatures were associated with lower mortality. Years with relatively high heat-related mortality were often followed by years with relatively low mortality. These year to year changes have important consequences for heat-warning systems and for predictions of heat-related mortality due to climate change.