986 resultados para heat fluxes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the theory given by Saltzman and Ashe (1976), sensible heat fluxes are calculated for the active and break phases of the southwest monsoon over the Indian region. The conclusion drawn is that the sensible heat flux is generally larger during the break monsoon situation when compared with that for the active monsoon situation. The synoptic heat flux is negligible when compared with mean and diurnal heat fluxes over the Indian region even during the monsoon season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat transfer rates measured in front and to the side of a protrusion on an aluminum flat plate subjected to hypersonic flow at zero angle of attack are presented for two flow enthalpies of approximately 2 MJ/kg and 4.5 MJ/kg. Experiments were conducted in the hypersonic shock tunnel (HST2) and free piston driven HST3 at a freestream Mach number of 8. Heat transfer data was obtained for different geometries of the protrusion of a height of 4 mm, which is approximately the local boundary layer thickness. Comparatively high rates of heat transfer were obtained at regions of flow circulation in the separated region, with the hottest spot generally appearing in front of the protuberance. Experimental values showed moderate agreement with existing empirical correlations at higher enthalpy but not at all for the lower enthalpy condition, although the correlations were coined at enthalpy values nearer to the lower value. Schlieren visualization was also done to investigate the flow structures qualitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface energy processes has an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. The research was undertaken to analyze the potential of Landsat and MODIS data in retrieving biophysical parameters in estimating land surface temperature & heat fluxes diurnally in summer and winter seasons of years 2000 and 2010 and understanding its effect on anthropogenic heat disturbance over Delhi and surrounding region. Results show that during years 2000-2010, settlement and industrial area increased from 5.66 to 11.74% and 4.92 to 11.87% respectively which in turn has direct effect on land surface temperature (LST) and heat fluxes including anthropogenic heat flux. Based on the energy balance model for land surface, a method to estimate the increase in anthropogenic heat flux (Has) has been proposed. The settlement and industrial areas has higher amounts of energy consumed and has high values of Has in all seasons. The comparison of satellite derived LST with that of field measured values show that Landsat estimated values are in close agreement within error of 2 degrees C than MODIS with an error of 3 degrees C. It was observed that, during 2000 and 2010, the average change in surface temperature using Landsat over settlement & industrial areas of both seasons is 1.4 degrees C & for MODIS data is 3.7 degrees C. The seasonal average change in anthropogenic heat flux (Has) estimated using Landsat & MODIS is up by around 38 W/m(2) and 62 W/m(2) respectively while higher change is observed over settlement and concrete structures. The study reveals that the dynamic range of Has values has increased in the 10 year period due to the strong anthropogenic influence over the area. The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat island effect. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors have attempted to compute the heat balance terms on the basis of formulas by Budyoko (1974). Some of the meteorological and oceanographic data were collected during the Trans Antarctic Expedition (1989-90). These data were supplemented by the data (1956-1988) made available by the national climatic center of NOAA (National Oceanic and Atmospheric Administration). Monthly means of sea surface temperature in Antarctic waters and meteorological data at a station (77°51'S; 166°39'E) 33m above sea level are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scintillometry is an established technique for determining large areal average sensible heat fluxes. The scintillometer measurement is related to sensible heat flux via Monin–Obukhov similarity theory, which was developed for ideal homogeneous land surfaces. In this study it is shown that judicious application of scintillometry over heterogeneous mixed agriculture on undulating topography yields valid results when compared to eddy covariance (EC). A large aperture scintillometer (LAS) over a 2.4 km path was compared with four EC stations measuring sensible (H) and latent (LvE) heat fluxes over different vegetation (cereals and grass) which when aggregated were representative of the LAS source area. The partitioning of available energy into H and LvE varied strongly for different vegetation types, with H varying by a factor of three between senesced winter wheat and grass pasture. The LAS derived H agrees (one-to-one within the experimental uncertainty) with H aggregated from EC with a high coefficient of determination of 0.94. Chronological analysis shows individual fields may have a varying contribution to the areal average sensible heat flux on short (weekly) time scales due to phenological development and changing soil moisture conditions. Using spatially aggregated measurements of net radiation and soil heat flux with H from the LAS, the areal averaged latent heat flux (LvELAS) was calculated as the residual of the surface energy balance. The regression of LvELAS against aggregated LvE from the EC stations has a slope of 0.94, close to ideal, and demonstrates that this is an accurate method for the landscape-scale estimation of evaporation over heterogeneous complex topography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A millimetre-wave scintillometer was paired with an infrared scintillometer, enabling estimation of large-area evapotranspiration across northern Swindon, a suburban area in the UK. Both sensible and latent heat fluxes can be obtained using this "two-wavelength" technique, as it is able to provide both temperature and humidity structure parameters, offering a major advantage over conventional single-wavelength scintillometry. The first paper of this two-part series presented the measurement theory and structure parameters. In this second paper, heat fluxes are obtained and analysed. These fluxes, estimated using two-wavelength scintillometry over an urban area, are the first of their kind. Source area modelling suggests the scintillometric fluxes are representative of 5–10 km2. For comparison, local-scale (0.05–0.5 km2) fluxes were measured by an eddy covariance station. Similar responses to seasonal changes are evident at the different scales but the energy partitioning varies between source areas. The response to moisture availability is explored using data from 2 consecutive years with contrasting rainfall patterns (2011–2012). This extensive data set offers insight into urban surface-atmosphere interactions and demonstrates the potential for two-wavelength scintillometry to deliver fluxes over mixed land cover, typically representative of an area 1–2 orders of magnitude greater than for eddy covariance measurements. Fluxes at this scale are extremely valuable for hydro-meteorological model evaluation and assessment of satellite data products

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sixteen monthly air–sea heat flux products from global ocean/coupled reanalyses are compared over 1993–2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993–2009 of 4.2 ± 1.1 W m−2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1–2 W m−2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m−2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly <10 W m−2. The interannual variability has consistent signal-to-noise ratio (~2) throughout the equatorial Pacific, reflecting ENSO variability. Comparisons at tropical buoy sites (10°S–15°N) over 2007–2009 showed too little ocean heat gain (i.e., flux into the ocean) in ORA-IP (up to 1/3 smaller than buoy measurements) primarily due to latent heat flux errors in ORA-IP. Comparisons with the Stratus buoy (20°S, 85°W) over a longer period, 2001–2009, also show the ORA-IP ensemble has 16 W m−2 smaller net heat gain, nearly all of which is due to too much latent cooling caused by differences in surface winds imposed in ORA-IP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the cold front passage effects on sensible and latent heat flux in a tropical hydroelectric reservoir. The study area, Itumbiara reservoir (Goiás State/Brazil) at the beginning of the austral winter, is characterized by the presence of a weak thermal stratification and the passage of several cold fronts from higher latitudes of South America. Sensible and latent heat fluxes were estimated considering the atmospheric boundary layer stability. In situ and MODIS water surface temperature data were used to adjust the coefficients for momentum and heat exchanges between water and atmosphere and spatialize the sensible and latent heat fluxes. The results showed that during a cold front event the sensible heat flux can be up to five times greater than the flux observed before. The latent heat flux tends to decrease during the cold front but increase again after the passage. The highest values of heat loss were observed at littoral zone and some Reservoir's embayment. The heat loss intensification can be separated in two moments: first, during the cold front passage, when the wind speed increases and the air temperature decreases; second, after the cold front passage, with air humidity decreasing. This can be considered a key process to understanding the heat loss in the Itumbiara reservoir. © 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.