785 resultados para heart valves


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We sought to analyze outcomes of patients with degenerated surgically implanted bioprosthetic heart valves undergoing valve-in-valve (viv) transcatheter aortic valve implantation (TAVI).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND New generation transcatheter heart valves (THV) may improve clinical outcomes of transcatheter aortic valve implantation. METHODS AND RESULTS In a nationwide, prospective, multicenter cohort study (Swiss Transcatheter Aortic Valve Implantation Registry, NCT01368250), outcomes of consecutive transfemoral transcatheter aortic valve implantation patients treated with the Sapien 3 THV (S3) versus the Sapien XT THV (XT) were investigated. An overall of 153 consecutive S3 patients were compared with 445 consecutive XT patients. Postprocedural mean transprosthetic gradient (6.5±3.0 versus 7.8±6.3 mm Hg, P=0.17) did not differ between S3 and XT patients, respectively. The rate of more than mild paravalvular regurgitation (1.3% versus 5.3%, P=0.04) and of vascular (5.3% versus 16.9%, P<0.01) complications were significantly lower in S3 patients. A higher rate of new permanent pacemaker implantations was observed in patients receiving the S3 valve (17.0% versus 11.0%, P=0.01). There were no significant differences for disabling stroke (S3 1.3% versus XT 3.1%, P=0.29) and all-cause mortality (S3 3.3% versus XT 4.5%, P=0.27). CONCLUSIONS The use of the new generation S3 balloon-expandable THV reduced the risk of more than mild paravalvular regurgitation and vascular complications but was associated with an increased permanent pacemaker rate compared with the XT. Transcatheter aortic valve implantation using the newest generation balloon-expandable THV is associated with a low risk of stroke and favorable clinical outcomes. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01368250.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The durability of a polymer trileaflet valve is dependent on leaflet stress concentrations, so valve designs that reduce stress can, hypothetically, increase durability. Design aspects that are believed to contribute to reduced leaflet stress include stent flexibility, parabolic coaptation curvature, and leaflet anisotropy. With this in mind, the purpose of this investigation was to elucidate what specific combinations of these parameters promote optimal acute and long-term valve function. A combination of four stent designs, seven leaflet reinforcement materials, and three coaptation geometries were evaluated through a combination of experimentation and modeling. Static tensile and Poisson’s ratio tests and dynamic tensile fatigue testing were used to evaluate the individual leaflet components; and hydrodynamic testing and accelerated valve fatigue was used to assess complete valve prototypes. The two most successful designs included a 0.40 mm thick knit-reinforced valve with a fatigue life of 10.35 years, and a 0.20 mm thick knit-reinforced valve with a 28.9 mmHg decrease in pressure drop over the former. A finite element model was incorporated to verify the impact of the above-mentioned parameters on leaflet stress concentrations. Leaflet anisotropy had a large impact on stress concentrations, and matching the circumferential modulus to that of the natural valve showed the greatest benefit. Varying the radial modulus had minimal impact. Varying coaptation geometry had no impact, but stent flexibility did have a marked effect on the stress at the top of the commissure, where a completely rigid stent resulted in a higher peak stress than a flexible stent (E = 385 MPa). In conclusion, stent flexibility and leaflet anisotropy do effect stress concentrations in the SIBS trileaflet valve, but coaptation geometry does not. Regions of high stress concentrations were linked to failure locations in vitro, so a fatigue prediction model was developed from the S/N curves generated during dynamic tensile testing of the 0.20 mm knit-reinforced leaflets. Failure was predicted at approximately 400 million cycles (10 years) at the top of the commissure. In vitro fatigue of this valve showed failure initiation after approximately 167 million cycles (4.18 years), but it was related to a design defect that is subsequently being changed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The durability of a polymer trileaflet valve is dependent on leaflet stress concentrations, so valve designs that reduce stress can, hypothetically, increase durability. Design aspects that are believed to contribute to reduced leaflet stress include stent flexibility, parabolic coaptation curvature, and leaflet anisotropy. With this in mind, the purpose of this investigation was to elucidate what specific combinations of these parameters promote optimal acute and long-term valve function. A combination of four stent designs, seven leaflet reinforcement materials, and three coaptation geometries were evaluated through a combination of experimentation and modeling. Static tensile and Poisson’s ratio tests and dynamic tensile fatigue testing were used to evaluate the individual leaflet components; and hydrodynamic testing and accelerated valve fatigue was used to assess complete valve prototypes. The two most successful designs included a 0.40 mm thick knit-reinforced valve with a fatigue life of 10.35 years, and a 0.20 mm thick knit-reinforced valve with a 28.9 mmHg decrease in pressure drop over the former. A finite element model was incorporated to verify the impact of the above-mentioned parameters on leaflet stress concentrations. Leaflet anisotropy had a large impact on stress concentrations, and matching the circumferential modulus to that of the natural valve showed the greatest benefit. Varying the radial modulus had minimal impact. Varying coaptation geometry had no impact, but stent flexibility did have a marked effect on the stress at the top of the commissure, where a completely rigid stent resulted in a higher peak stress than a flexible stent (E = 385 MPa). In conclusion, stent flexibility and leaflet anisotropy do effect stress concentrations in the SIBS trileaflet valve, but coaptation geometry does not. Regions of high stress concentrations were linked to failure locations in vitro, so a fatigue prediction model was developed from the S/N curves generated during dynamic tensile testing of the 0.20 mm knit-reinforced leaflets. Failure was predicted at approximately 400 million cycles (10 years) at the top of the commissure. In vitro fatigue of this valve showed failure initiation after approximately 167 million cycles (4.18 years), but it was related to a design defect that is subsequently being changed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The closing sounds of mechanical heart valves can be disturbing for patients and their closest relatives. Although some investigations into mechanical heart valve sounds have been performed, the particularities of the valve sound when it is attached to a vascular prosthesis to replace the aortic root and the ascending aorta has not been studied to date. The study aim was to compare the closing sounds of three various mechanical composite graft prostheses, and to analyze the impact of such sounds on the patients' quality of life.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE The aim of this study was to evaluate the utility of cardiac postmortem magnetic resonance (PMMR) to perform routine measurements of the ventricular wall thicknesses and the heart valves and to assess if imaging measurements are consistent with traditional autopsy measurements. METHODS In this retrospective study, 25 cases with cardiac PMMR and subsequent autopsy were included. The thicknesses of the myocardial walls as well as the circumferences of all heart valves were measured on cardiac PMMR and compared to autopsy measurements. Paired samples T-test and the Wilcoxon-Signed rank test, were used to compare autopsy and cardiac PMMR measurements. For exploring correlations, the Pearson's Correlation coefficient and the Spearman's Rho test were used. RESULTS Cardiac PMMR measurements of the aortic and pulmonary valve circumferences showed no significant differences from autopsy measurements. The mitral and tricuspid valves circumferences differed significantly from autopsy measurements. Left myocardial and right myocardial wall thickness also differed significantly from autopsy measurements. Left and right myocardial wall thickness, and tricuspid valve circumference measurements on cardiac PMMR and autopsy, correlated strongly and significantly. CONCLUSION Several PMMR measurements of cardiac parameters differ significantly from corresponding autopsy measurements. However, there is a strong correlation between cardiac PMMR measurements and autopsy measurements in the majority of these parameters. It is important to note that myocardial walls are thicker when measured in situ on cardiac PMMR than when measured at autopsy. Investigators using post-mortem MR should be aware of these differences in order to avoid false diagnoses of cardiac pathology based on cardiac PMMR.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heart valve prostheses are used to replace native heart valves which that are damaged because of congenital diseases or due to ageing. Biological prostheses made of bovine pericardium are similar to native valves and do not require any anticoagulation treatment, but are less durable than mechanical prostheses and usually fail by tearing. Researches are oriented in improving the resistance and durability of biological heart valve prostheses in order to increase their life expectancy. To understand the mechanical behaviour of bovine pericardium and relate it to its microstructure (mainly collagen fibres concentration and orientation) uniaxial tensile tests have been performed on a model material made of collagen fibres. Small Angle Light Scattering (SALS) has been also used to characterize the microstructure without damaging the material. Results with the model material allowed us to obtain the orientation of the fibres, relating the microstructure to mechanical performance

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Lapeyre-Triflo FURTIVA valve aims at combining the favorable hemodynamics of bioprosthetic heart valves with the durability of mechanical heart valves (MHVs). The pivoting region of MHVs is hemodynamically of special interest as it may be a region of high shear stresses, combined with areas of flow stagnation. Here, platelets can be activated and may form a thrombus which in the most severe case can compromise leaflet mobility. In this study we set up an experiment to replicate the pulsatile flow in the aortic root and to study the flow in the pivoting region under physiological hemodynamic conditions (CO = 4.5 L/min / CO = 3.0 L/min, f = 60 BPM). It was found that the flow velocity in the pivoting region could reach values close to that of the bulk flow during systole. At the onset of diastole the three valve leaflets closed in a very synchronous manner within an average closing time of 55 ms which is much slower than what has been measured for traditional bileaflet MHVs. Hot spots for elevated viscous shear stresses were found at the flanges of the housing and the tips of the leaflet ears. Systolic VSS was maximal during mid-systole and reached levels of up to 40 Pa.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current artificial heart valves are classified as mechanical and bioprosthetic. An appealing pathway that promises to overcome the shortcomings of commercially available heart valves is offered by the interdisciplinary approach of cardiovascular tissue engineering. However, the mechanical properties of the Tissue Engineering Heart Valves (TEHV) are limited and generally fail in the long-term use. To meet this performance challenge novel biodegradable triblock copolymer poly(ethylene oxide)-polypropylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO or F108) crosslinked to Silk Fibroin (F108-SilkC) to be used as tri-leaflet heart valve material was investigated. ^ Synthesis of ten polymers with varying concentration and thickness (55 µm, 75 µm and 100 µm) was achieved via a covalent crosslinking scheme using bifunctional polyethylene glycol diglycidyl ether (PEGDE). Static and fatigue testing were used to assess mechanical properties of films, and hydrodynamic testing was performed to determine performance under a simulated left ventricular flow regime. The crosslinked copolymer (F108-Silk C) showed greater flexibility and resilience, but inferior ultimate tensile strength, by increasing concentration of PEGDE. Concentration molar ratio of 80:1 (F108: Silk) and thickness of 75 µm showed longer fatigue life for both tension-tension and bending fatigue tests. Four valves out of twelve designed satisfactorily complied with minimum performance requirement ISO 5840, 2005. ^ In conclusion, it was demonstrated that the applicability of a degradable polymer in conjugation with silk fibroin for tissue engineering cardiovascular use, specifically for aortic valve leaflet design, met the performance demands. Thinner thicknesses (t<75 µm) in conjunction with stiffness lower than 320 MPa (80:1, F108: Silk) are essential for the correct functionality of proposed heart valve biomaterial F108-SilkC. Fatigue tests were demonstrated to be a useful tool to characterize biomaterials that undergo cyclic loading. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heart valve disease occurs in adults as well as in pediatric population due to age-related changes, rheumatic fever, infection or congenital condition. Current treatment options are limited to mechanical heart valve (MHV) or bio-prosthetic heart valve (BHV) replacements. Lifelong anti-coagulant medication in case of MHV and calcification, durability in case of BHV are major setbacks for both treatments. Lack of somatic growth of these implants require multiple surgical interventions in case of pediatric patients. Advent of stem cell research and regenerative therapy propose an alternative and potential tissue engineered heart valves (TEHV) treatment approach to treat this life threatening condition. TEHV has the potential to promote tissue growth by replacing and regenerating a functional native valve. Hemodynamics play a crucial role in heart valve tissue formation and sustained performance. The focus of this study was to understand the role of physiological shear stress and flexure effects on de novo HV tissue formation as well as resulting gene and protein expression. A bioreactor system was used to generate physiological shear stress and cyclic flexure. Human bone marrow mesenchymal stem cell derived tissue constructs were exposed to native valve-like physiological condition. Responses of these tissue constructs to the valve-relevant stress states along with gene and protein expression were investigated after 22 days of tissue culture. We conclude that the combination of steady flow and cyclic flexure helps support engineered tissue formation by the co-existence of both OSS and appreciable shear stress magnitudes, and potentially augment valvular gene and protein expression when both parameters are in the physiological range.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synthetic tri-leaflet heart valves generally fail in the long-term use (more than 10 years). Tearing and calcification of the leaflets usually cause failure of these valves as a consequence of high tensile and bending stresses borne on the material. The primary purpose of this study was to explore the possibilities of a new polymer composite to be used as synthetic tri-leaflet heart valve material. This composite was comprised of polystyrene-polyisobutylene-polystyrene (Quatromer), a proprietary polymer, embedded with continuous polypropylene (PP) fibers. Quatromer had been found to be less likely to degrade in vivo than polyurethane. Moreover, it was postulated that a decrease in tears and perforations might result from fiber-reinforced leaflets reducing high stresses on the leaflets. The static and dynamic mechanical properties of the Quatromer/PP composite were compared with those of an implant-approved polyurethane (PU) for cardiovascular applications. Results show that the reinforcement of Quatromer with PP fibers improves both its static and dynamic properties as compared to the PU. Hence, this composite has the potential to be a more suitable material for synthetic tri-leaflet heart valves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les substituts valvulaires disponibles actuellement comportent encore plusieurs lacunes. La disponibilité restreinte des allogreffes, les risques de coagulation associés aux valves mécaniques et la durabilité limitée des bioprothèses en tissu animal sont toutes des problématiques que le génie tissulaire a le potentiel de surmonter. Avec la méthode d’auto-assemblage, le seul support des cellules consiste en leur propre matrice extracellulaire, permettant la fabrication d’un tissu entièrement libre de matériau exogène. Ce projet a été précédé par ceux des doctorantes Catherine Tremblay et Véronique Laterreur, ayant respectivement développé une méthode de fabrication de valves moulées par auto-assemblage et une nouvelle version de bioréacteur. Au cours de cette maîtrise, le nouveau bioréacteur a été adapté à une utilisation stérile avec des tissus vivants et la méthode de fabrication de valves moulées a été modifiée puis éprouvée avec la production de 4 prototypes. Ces derniers n’ont pas permis d’obtenir des performances satisfaisantes en bioréacteur, motivant la conception d’une nouvelle méthode. Plutôt que de tenter de répliquer la forme native des valves cardiaques, des études récentes ont suggéré une géométrie tubulaire. Cela permettrait une fabrication simplifiée, une implantation rapide, et un encombrement minimal en vue d’opérations percutanées. Cette approche minimaliste s’accorde bien avec la méthode d’auto-assemblage, qui a déjà été utilisée pour la production de vaisseaux de petits diamètres. Un total de 11 tubes ont été produits par l’enroulement de feuillets fibroblastiques auto-assemblés, puis ont été transférés sur des mandrins de diamètre inférieur, leur permettant de se contracter librement. La caractérisation de deux tubes contrôles a démontré que cette phase de précontraction était bénéfique pour les propriétés du tissu en plus de prévenir la contraction en bioréacteur. Les prototypes finaux pouvaient supporter un écoulement physiologique pulmonaire. Cette nouvelle méthode montre que le procédé d’auto-assemblage a le potentiel d’être utilisé pour fabriquer des valves cardiaques tubulaires.