781 resultados para heart beat
Resumo:
The effect of AC and DC electric stimulations on the heart-rate and the entire body of Heteropneustis fossillis, Tilapia mossambica and Macrobrachium rosenbergii were studied and presented in kymograph tracings. The reaction of spinal cord in Puntius ticto, Heteropneustis fossilis and Tilapia mossambica to D. C. field was observed to find out its role in electric shocks. A test-check of the electrical resistance of a few species was also conducted. The effect of D. C. and A.C. on the body muscle was found to be the same as that in the case of frog. Different degrees of cardiac slowing were observed in AC and DC. Unbalanced galvanotropic movements were also noticed in spinal fishes.
(Fig. 2) Heart beat rate of three larval stages of the kelp crab Taliepus dentatus at site CC, Chile
Resumo:
Measuring heartbeat and respitory movements on a kymograph (source: Not Just Any Medical School by Horace W. Davenport)
Resumo:
The current classification system for spinal cord injury (SCI) considers only somatic information and neglects autonomic damage after injiuy. Heart rate variability (HRV) has the potential to be a valuable measure of cardiac autonomic control after (SCI). Five individuals with tetraplegia and four able-bodied controls underwent 1 min continuous ECG recordings during rest, after Metoprolol administration (max dose=3x5mg) and after Atropine administration (0.02mg/kg) in both supine and 40° head-up tilt. After Metoprolol administration there was a 61.8% decrease in the LF:HF ratio in the SCI participants suggesting that the LF:HF ratio is a reflection of cardiac sympathetic outflow. After Atropine administration there was a 99.1% decrease in the HF power in the SCI participants suggesting that HF power is highly representative of cardiac parasympathetic outflow. There were no significant differences between the SCI and able-bodied participants. Thus, HRV measures are a valid index of cardiac autonomic control after SCI.
Resumo:
Autonomic control of heart rate variability and the central location of vagal preganglionic neurones (VPN) were examined in the rattlesnake ( Crotalus durissus terrificus), in order to determine whether respiratory sinus arrhythmia (RSA) occurred in a similar manner to that described for mammals. Resting ECG signals were recorded in undisturbed snakes using miniature datalogging devices, and the presence of oscillations in heart rate (f(H)) was assessed by power spectral analysis (PSA). This mathematical technique provides a graphical output that enables the estimation of cardiac autonomic control by measuring periodic changes in the heart beat interval. At fH above 19 min(-1) spectra were mainly characterised by low frequency components, reflecting mainly adrenergic tonus on the heart. By contrast, at f(H) below 19 min(-1) spectra typically contained high frequency components, demonstrated to be cholinergic in origin. Snakes with a f(H) > 19 min(-1) may therefore have insufficient cholinergic tonus and/or too high an adrenergic tonus acting upon the heart for respiratory sinus arrhythmia ( RSA) to develop. A parallel study monitored f(Hd) simultaneously with the intraperitoneal pressures associated with lung inflation. Snakes with a fH < 19 min(-1) exhibited a high frequency (HF) peak in the power spectrum, which correlated with ventilation rate (f(V)). Adrenergic blockade by propranolol infusion increased the variability of the ventilation cycle, and the oscillatory component of the f(H) spectrum broadened accordingly. Infusion of atropine to effect cholinergic blockade abolished this HF component, confirming a role for vagal control of the heart in matching f(H) and f(V) in the rattlesnake. A neuroanatomical study of the brainstem revealed two locations for vagal preganglionic neurones (VPN). This is consistent with the suggestion that generation of ventilatory components in the heart rate variability (HRV) signal are dependent on spatially distinct loci for cardiac VPN. Therefore, this study has demonstrated the presence of RSA in the HRV signal and a dual location for VPN in the rattlesnake. We suggest there to be a causal relationship between these two observations.
Resumo:
Monitoring foetal health is a very important task in clinical practice to appropriately plan pregnancy management and delivery. In the third trimester of pregnancy, ultrasound cardiotocography is the most employed diagnostic technique: foetal heart rate and uterine contractions signals are simultaneously recorded and analysed in order to ascertain foetal health. Because ultrasound cardiotocography interpretation still lacks of complete reliability, new parameters and methods of interpretation, or alternative methodologies, are necessary to further support physicians’ decisions. To this aim, in this thesis, foetal phonocardiography and electrocardiography are considered as different techniques. Further, variability of foetal heart rate is thoroughly studied. Frequency components and their modifications can be analysed by applying a time-frequency approach, for a distinct understanding of the spectral components and their change over time related to foetal reactions to internal and external stimuli (such as uterine contractions). Such modifications of the power spectrum can be a sign of autonomic nervous system reactions and therefore represent additional, objective information about foetal reactivity and health. However, some limits of ultrasonic cardiotocography still remain, such as in long-term foetal surveillance, which is often recommendable mainly in risky pregnancies. In these cases, the fully non-invasive acoustic recording, foetal phonocardiography, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the so recorded foetal heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. A new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings is presented in this thesis. Different filtering and enhancement techniques, to enhance the first foetal heart sounds, were applied, so that different signal processing techniques were implemented, evaluated and compared, by identifying the strategy characterized on average by the best results. In particular, phonocardiographic signals were recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by the developed algorithm and the other provided by cardiotocographic device). The algorithm performances were tested on phonocardiographic signals recorded on pregnant women, showing reliable foetal heart rate signals, very close to the ultrasound cardiotocographic recordings, considered as reference. The algorithm was also tested by using a foetal phonocardiographic recording simulator developed and presented in this research thesis. The target was to provide a software for simulating recordings relative to different foetal conditions and recordings situations and to use it as a test tool for comparing and assessing different foetal heart rate extraction algorithms. Since there are few studies about foetal heart sounds time characteristics and frequency content and the available literature is poor and not rigorous in this area, a data collection pilot study was also conducted with the purpose of specifically characterising both foetal and maternal heart sounds. Finally, in this thesis, the use of foetal phonocardiographic and electrocardiographic methodology and their combination, are presented in order to detect foetal heart rate and other functioning anomalies. The developed methodologies, suitable for longer-term assessment, were able to detect heart beat events correctly, such as first and second heart sounds and QRS waves. The detection of such events provides reliable measures of foetal heart rate, potentially information about measurement of the systolic time intervals and foetus circulatory impedance.
Resumo:
A regular heart beat is dependent on a specialized network of pacemaking and conductive cells. There has been a longstanding controversy regarding the developmental origin of these cardiac tissues which also manifest neural-like properties. Recently, we have shown conclusively that during chicken embryogenesis, impulse-conducting Purkinje cells are recruited from myocytes in spatial association with developing coronary arteries. Here, we report that cultured embryonic myocytes convert to a Purkinje cell phenotype after exposure to the vascular cytokine, endothelin. This inductive response declined gradually during development. These results yield further evidence for a role of arteriogenesis in the induction of impulse-conducting Purkinje cells within the heart muscle lineage and also may provide a basis for tissue engineering of cardiac pacemaking and conductive cells.
Resumo:
To feel another person’s pulse is an intimate and physical interaction. In these prototypes we use near field communications to extend the tangible reach of our heart beat, so another person can feel our heart beat at a distance. The work is an initial experiment in near field haptic interaction, and is used to explore the quality of interactions resulting from feeling another persons pulse. The work takes the form of two feathered white gauntlets, to be worn on the fore arm. Each of the gauntlets contain a pulse sensor, radio transmitter and vibrator. The pulse of the wearer is transmitted to the other feathered gauntlet and transformed into haptic feedback. When there are two wearers, their heart beats are exchanged. To be felt by of each other without physical contact.
Computation of ECG signal features using MCMC modelling in software and FPGA reconfigurable hardware
Resumo:
Computational optimisation of clinically important electrocardiogram signal features, within a single heart beat, using a Markov-chain Monte Carlo (MCMC) method is undertaken. A detailed, efficient data-driven software implementation of an MCMC algorithm has been shown. Initially software parallelisation is explored and has been shown that despite the large amount of model parameter inter-dependency that parallelisation is possible. Also, an initial reconfigurable hardware approach is explored for future applicability to real-time computation on a portable ECG device, under continuous extended use.
Resumo:
The thermal sensitivity and heat shock response of the different races of the mulberry silkworm Bombyx mori have been analysed. The multivoltine race, strains C. Nichi and Pure Mysore showed better survival rates than the bivoltine race, strain NB4D2 exposed to 41 degrees C and above. In general, the fifth instar larvae and the pupae exhibited maximum tolerance compared to the early larval instars, adult moths or the eggs. Exposure up to 39 degrees C for 1 or 2 h was tolerated equally whereas temperatures above 43 degrees C proved to be lethal for all. Treatment of larvae at 41 degrees C for Ih resulted in a variety of physiological alterations including increased heart beat rates, differential haemocyte counts, enlargement of granulocytes and the presence of additional protein species in the tissues and haemolymph. The appearance of a 93 kDa protein in the haemolymph, fat bodies and cuticle, following the heat shocking of larvae in vivo was a characteristic feature in all the three strains examined although the kinetics of their appearance itself was different. In haemolymph, the protein appeared immediately in response to heat shock in C. Nichi reaching the maximal levels in 2-4 h whereas its presence was noticeable only after 2-4 h recovery time in Pure Mysore and bivoltine races. The fat body from both C. Nichi and NB4D2 showed the presence of 93 kDa, 89 kDa and 70 kDa proteins on heat shock. The haemocytes, on the other hand, expressed only a 70 kDa protein consequent to heat shock. The 93 kDa protein in the haemolymph, therefore could have arisen from some other tissue, possibly the fat body. The 93 kDa protein was detected after heat shock in pupae and adult moths as well, although the presence of an additional (56 kDa) protein was also apparent in the adults. The presence of 46 kDa and 28 kDa bands in addition to the 93 kDa band in the cuticular proteins immediately following heat shock was clearly discernible. The 70 kDa band did not show much changes in the cuticular proteins on heat shock. In contrast to the changes in protein profiles seen in tissues and haemolymph following heat shock in vivo, the heat treatment of isolated fat body or haemolymph in vitro resulted in protein degradation.
Resumo:
Mystus gulio eggs are strongly adhesive and contain relatively small yolk (0.75-1.0 mm). The egg envelop is thick and transparent. First cleavage (two cells), four cells, eight cells, sixteen cells and multi cells stages were found 20, 25, 35-40, 60 and 70 minutes after fertilization, respectively. The morula stage was visualized within 1.5 h after fertilization. The heart beat visible and the circulatory system commenced after 16 h of fertilization. Embryos hatched 18-20h after activation of egg. The newly hatched larva measured 2.82±0.03 mm in length and 0.32±0.06 mg in weight. The yolk sac was fully absorbed by the third day though larvae commenced exogenous feeding even before completion of yolk absorption. A 5-day old post larva began wandering in search of food. Ten-day old post larvae endowed with eight branched rays in dorsal fin and seven in caudal fin. Fifteen-day old post larvae had the pectm:al spine become stout though the embryonic fin folds had to be disappeared. The length of fingerlings ranged from 25-30 mm after 30 days, and their external features were just like those of an adult except that they were not sexually matured.