979 resultados para hawking radiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation and semiclassical evaporation of two-dimensional black holes is studied in an exactly solvable model. Above a certain threshold energy flux, collapsing matter forms a singularity inside an apparent horizon. As the black hole evaporates the apparent horizon recedes and meets the singularity in a finite proper time. The singularity emerges naked, and future evolution of the geometry requires boundary conditions to be imposed there. There is a natural choice of boundary conditions which matches the evaporated black hole solution onto the linear dilaton vacuum. Below the threshold energy flux no horizon forms and boundary conditions can be imposed where infalling matter is reflected from a timelike boundary. All information is recovered at spatial infinity in this case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the recently found equivalence for the response of a static scalar source interacting with a massless Klein-Gordon field when the source is (i) static in Schwarzschild spacetime, in the Unruh vacuum associated with the Hawking radiation, and (ii) uniformly accelerated in Minkowski spacetime, in the inertial vacuum, provided that the source's proper acceleration is the same in both cases. It is shown that this equivalence is broken when the massless Klein-Gordon field is replaced by a massive one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study and look for similarities between the response rates R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) of a static scalar source with constant proper acceleration a(0) interacting with a massless, conformally coupled Klein-Gordon field (i) in de Sitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the de Sitter cosmological horizon and (ii) in Schwarzschild-de Sitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Lambda is the cosmological constant and M is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of de Sitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-de Sitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) do not coincide in general, but tend to each other when Lambda-->0 or a(0)-->infinity. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate whether the equality found for the response of static scalar sources interacting (i) with Hawking radiation in Schwarzschild spacetime and (ii) with the Fulling-Davies-Unruh thermal bath in the Rindler wedge is maintained in the case of electric charges. We find a finite result in the Schwarzschild case, which is computed exactly, in contrast with the divergent result associated with the infrared catastrophe in the Rindler case, i.e., in the case of uniformly accelerated charges in Minkowski spacetime. Thus the equality found for scalar sources does not hold for electric charges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the response rate of (i) a static source interacting with Hawking radiation of a massless scalar field in Schwarzschild spacetime (with the Unruh vacuum) and that of (ii) a uniformly accelerated source with the same proper acceleration in Minkowski spacetime (with the Minkowski vacuum) are equal. We show that this equality will not hold if the Unruh vacuum is replaced by the Hartle-Hawking vacuum. It is verified that the source responds to the Hawking radiation near the horizon as if it were at rest in a thermal bath in Minkowski spacetime with the same temperature. It is also verified that the response rate in the Hartle-Hawking vacuum approaches that in Minkowski spacetime with the same temperature far away from the black hole. Finally, we compare our results with others in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study quasinormal modes and scattering properties via calculation of the S matrix for scalar and electromagnetic fields propagating in the background of spherically symmetric and axially symmetric traversable Lorentzian wormholes of a generic shape. Such wormholes are described by the general Morris-Thorne ansatz. The properties of quasinormal ringing and scattering are shown to be determined by the behavior of the wormhole's shape function b(r) and shift factor Phi(r) near the throat. In particular, wormholes with the shape function b(r), such that b(dr) approximate to 1, have very long-lived quasinormal modes in the spectrum. We have proved that the axially symmetric traversable Lorentzian wormholes, unlike black holes and other compact rotating objects, do not allow for superradiance. As a by-product we have shown that the 6th order WKB formula used for scattering problems of black or wormholes gives quite high accuracy and thus can be used for quite accurate calculations of the Hawking radiation processes around various black holes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we study the emission of tensor-type gravitational degrees of freedom from a higher-dimensional, simply rotating black hole in the bulk. The decoupled radial part of the corresponding field equation is first solved analytically in the limit of low-energy emitted particles and low-angular momentum of the black hole in order to derive the absorption probability. Both the angular and radial equations are then solved numerically, and the comparison of the analytical and numerical results shows a very good agreement in the low and intermediate energy regimes. By using our exact, numerical results we compute the energy and angular-momentum emission rates and their dependence on the spacetime parameters such as the number of additional spacelike dimensions and the angular momentum of the black hole. Particular care is given to the convergence of our results in terms of the number of modes taken into account in the calculation and the multiplicity of graviton tensor modes that correspond to the same angular-momentum numbers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wave fronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

(2+1)-dimensional anti-de Sitter (AdS) gravity is quantized in the presence of an external scalar field. We find that the coupling between the scalar field and gravity is equivalently described by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a microscopic computation of the transition rates between black hole states due to absorption and induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiation as spontaneous emission, and we find agreement with the semiclassical result, including greybody factors. This result also has application to four and five-dimensional black holes in supergravity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a simple quantum field theoretical toy model for black-hole evaporation and study the backreaction of Hawking radiation onto the classical background. It turns out that the horizon is also pushed back in this situation (i.e., the interior region shrinks) though this backreaction is not caused by energy conservation but by momentum balance. The effective heat capacity and induced entropy variation can have both signs-depending on the parameters of the model.