1000 resultados para harmonic flow
Resumo:
This work presents a new three-phase transformer modeling suitable for simulations in Pspice environment, which until now represents the electrical characteristics of a real transformer. It is proposed the model comparison to a three-phase transformer modeling present in EMTP - ATP program, which includes the electrical and magnetic characteristics. In addition, a set including non-linear loads and a real three-phase transformer was prepared in order to compare and validate the results of this new proposed model. The three-phase Pspice transformer modeling, different from the conventional one using inductance coupling, is remarkable for its simplicity and ease in simulation process, since it uses available voltage and current sources present in Pspice program, enabling simulations of three-phase network system including the most common configuration, three wires in the primary side and four wires in the secondary side (three-phases and neutral). Finally, the proposed modeling becomes a powerful tool for three-phase network simulations due to its simplicity and accuracy, able to simulate and analyze harmonic flow in three-phase systems under balanced and unbalanced conditions.
Resumo:
An important alteration of the equivalent loads profile has been observed in the electrical energy distribution systems, for the last years. Such fact is due to the significant increment of the electronic processors of electric energy that, in general, behave as nonlinear loads, generating harmonic distortions in the currents and voltages along the electric network. The effects of these nonlinear loads, even if they are concentrated in specific sections of the network, are present along the branch circuits, affecting the behavior of the entire electric network. For the evaluation of this phenomenon it is necessary the analysis of the harmonic currents flow and the understanding of the causes and effects of the consequent voltage harmonic distortions. The usual tools for calculation the harmonic flow consider one-line equivalent networks, balanced and symmetrical systems. Therefore, they are not tools appropriate for analysis of the operation and the influence/interaction of mitigation elements. In this context, this work proposes the development of a computational tool for the analysis of the three-phase harmonic propagation using Norton modified models and considering the real nature of unbalanced electric systems operation. © 2011 IEEE.
Resumo:
The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.5
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The purpose of this paper is to present the application of a three-phase harmonic propagation analysis time-domain tool, using the Norton model to approach the modeling of non-linear loads, making the harmonics currents flow more appropriate to the operation analysis and to the influence of mitigation elements analysis. This software makes it possible to obtain results closer to the real distribution network, considering voltages unbalances, currents imbalances and the application of mitigation elements for harmonic distortions. In this scenario, a real case study with network data and equipments connected to the network will be presented, as well as the modeling of non-linear loads based on real data obtained from some PCCs (Points of Common Coupling) of interests for a distribution company.
Resumo:
This paper presents a new methodology to estimate unbalanced harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The problem solving algorithm herein proposed makes use of data from various power quality meters, which can either be synchronized by high technology GPS devices or by using information from a fundamental frequency load flow, what makes the overall power quality monitoring system much less costly. The ES based harmonic estimation model is applied to a 14 bus network to compare its performance to a conventional Monte Carlo approach. It is also applied to a 50 bus subtransmission network in order to compare the three-phase and single-phase approaches as well as the robustness of the proposed method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a new methodology to estimate harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The main advantage in using such a technique relies upon its modeling facilities as well as its potential to solve fairly complex problems. The problem-solving algorithm herein proposed makes use of data from various power-quality (PQ) meters, which can either be synchronized by high technology global positioning system devices or by using information from a fundamental frequency load flow. This second approach makes the overall PQ monitoring system much less costly. The algorithm is applied to an IEEE test network, for which sensitivity analysis is performed to determine how the parameters of the ES can be selected so that the algorithm performs in an effective way. Case studies show fairly promising results and the robustness of the proposed method.
Resumo:
We find some new examples to show nonuniquence for the heat flow of harmonic maps where weak solutions satisfy the same monotonicity property.
Resumo:
OBJECTIVE: To test the feasibility, safety and accuracy of the adenosine protocol in the study of myocardial perfusion with microbubbles contrast echocardiography. METHODS: 81 pts (64 male, 60+11 years) were submitted to contrast echocardiography with PESDA (sonicated solution of albumin 20%-1ml, dextrose 5%-12ml and deca-fluorobutane gas-8ml) to study the myocardial perfusion at rest and after bolus injection of adenosine (6 to 18mg) and to coronary angiography within 1 month each other. For each patient 3 left ventricle perfusion beds were considered (total of 243 territories). 208 territories were analyzed and 35 territories were excluded. PESDA was continuously infused (1-2ml/min), titrated for best myocardial contrast. Triggered (1:1) second harmonic imaging was used. RESULTS: Coronary angiography showed 70 flow limiting (> 75%) lesions and 138 no flow limiting lesions. At rest an obvious myocardium contrast enhancement was seen in at least 1 segment of a territory in all patients. After adenosine injection an unquestionable further increase in myocardial contrast was observed in 136 territories (99%) related to no flow limiting lesions, lasting < 10 s, and a myocardial perfusion defect was detected in 68 territories (97%) related to flow limiting lesions. It was observed only 4 false results. There were no serious complications. CONCLUSION: Myocardial perfusion study with PESDA and adenosine protocol is a practical, safe and accurate method to analyze the coronary flow reserve.
Resumo:
The mathematical model for two-dimensional unsteady sonic flow, based on the classical diffusion equation with imaginary coefficient, is presented and discussed. The main purpose is to develop a rigorous formulation in order to bring into light the correspondence between the sonic, supersonic and subsonic panel method theory. Source and doublet integrals are obtained and Laplace transformation demonstrates that, in fact, the source integral is the solution of the doublet integral equation. It is shown that the doublet-only formulation reduces to a Volterra integral equation of the first kind and a numerical method is proposed in order to solve it. To the authors' knowledge this is the first reported solution to the unsteady sonic thin airfoil problem through the use of doublet singularities. Comparisons with the source-only formulation are shown for the problem of a flat plate in combined harmonic heaving and pitching motion.
Resumo:
Infrared spectra of the two stretching fundamentals of both HBS and DBS have been observed, using a continuous flow system through a multiple reflection long path cell at a pressure around 1 Torr and a Nicolet Fourier Transform spectrometer with a resolution of about 0•1 cm-1. The v3 BS stretching fundamental of DBS, near 1140 cm-1, is observed in strong Fermi resonance with the overtone of the bend 2v2. The bending fundamental v2 has not been observed and must be a very weak band. The analysis of the results in conjunction with earlier work gives the equilibrium structure (re(BH) = 1•1698(12) , re(BS) = 1•5978(3) ) and the harmonic and anharmonic force field.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We observed Santiaguito volcano in southwestern Guatemala from March 2008 - March 2010. Seismic and infrasound data collected between January and March of 2009 contain records of many diverse processes occurring at the dacitic dome complex, including the recurrence of short lived (30-200 seconds in duration) harmonic tremor concurrent with ash poor gas emissions from the volcano. We employ several different analytical techniques to examine different portions of the tremor and source mechanisms. We use the parameters derived by this analysis to compare the feasibility of several suggested models of eruption mechanisms, and determine that this type of harmonic tremor is most justifiably generated by the flow of gas through crack networks generated by shear fracture along the magma conduit margin.