996 resultados para hair cell
Resumo:
This paper investigates the relationship between hair cell proliferation and immunosuppression in chicks.
Resumo:
Hair cell death and regeneration on the zebrafish posterior lateral line was investigated after cisplatin administration. Hair cell regeneration was first observed by 24 hours of recovery and was further analyzed after specific recovery intervals. Disruption of the notch signaling pathways by the y-secretase inhibitor DAPT resulted in an increase in hair cells at three days of recovery.
Resumo:
The tonotopic organization of the mammalian cochlea is accompanied by structural gradients which include the somatic lengths of outer hair cells (OHCs). These receptors rest upon the vibrating portion of the basilar membrane and have been reported to exhibit motile responses following chemical and electrical stimulation. These movements were examined in detail in this dissertation. It was found that isolated OHCs cultured in vitro respond to chemical depolarization with slow tonic movements, and to electrical waveforms with bi-directional, frequency following movements extending from DC to at least 10 kHz.^ Slow contractions were also elicited following electrical stimulation, bath incubation in carbachol (a cholinergic agonist), and increases in extracellular K+ concentration as little as 50 mM.^ Isolated OHCs display anatomical features which are remarkable when contrasted with those prepared from intact receptor organs. A complex structure located between the cuticular plate and the nuclear membrane was consistently observed and was examined by serial cross-sections which revealed a network of non-membrane bound densities. This corresponded to a granular complex seen at the light microscope level. The complex was composed of dense regions of organelles, striated structures embedded within the core, and a circumferential network of microtubules residing in the peri-nuclear portion of the cell. In cells which had lost their nuclear attachment to the terminal synaptic body, the granular complex could be made to contract without effecting any change in cellular length, implying that the complex may be the driving force behind certain aspects of the motile response.^ Most cells displayed movements which revealed asymmetries analogous to those reported for OHC receptor potentials in vivo. The contraction phase (for longer cells) was shown to have a small time constant (approximately 400 microseconds) and saturated with limited displacements. The expansion phase had time constants as large as 1.3 milliseconds but yielded displacements as much as 60 percent larger than those seen for contractions.^ Additional waveform characteristics seen in the in vivo response could be emulated either by biasing the cell's resting length with either direct current, triggering contractions via large electrical displacements, or incubation with depolarizing compounds.^ Alternatively, short (20-30 um) cells revealed more linear response characteristics to the probe stimulus. Partial saturation was achieved and revealed a DC component which was opposite in polarity to that seen in longer cells. (Abstract shortened with permission of author.) ^
Resumo:
Bacterial infections represent a rapidly growing challenge to human health. Aminoglycosides are widely used broad-spectrum antibiotics, but they inflict permanent hearing loss in up to ~50% of patients by causing selective sensory hair cell loss. Here, we hypothesized that reducing aminoglycoside entry into hair cells via mechanotransducer channels would reduce ototoxicity, and therefore we synthesized 9 aminoglycosides with modifications based on biophysical properties of the hair cell mechanotransducer channel and interactions between aminoglycosides and the bacterial ribosome. Compared with the parent aminoglycoside sisomicin, all 9 derivatives displayed no or reduced ototoxicity, with the lead compound N1MS 17 times less ototoxic and with reduced penetration of hair cell mechanotransducer channels in rat cochlear cultures. Both N1MS and sisomicin suppressed growth of E. coli and K. pneumoniae, with N1MS exhibiting superior activity against extended spectrum β lactamase producers, despite diminished activity against P. aeruginosa and S. aureus. Moreover, systemic sisomicin treatment of mice resulted in 75% to 85% hair cell loss and profound hearing loss, whereas N1MS treatment preserved both hair cells and hearing. Finally, in mice with E. coli-infected bladders, systemic N1MS treatment eliminated bacteria from urinary tract tissues and serially collected urine samples, without compromising auditory and kidney functions. Together, our findings establish N1MS as a nonototoxic aminoglycoside and support targeted modification as a promising approach to generating nonototoxic antibiotics.
Resumo:
Aminoglycosides are commonly prescribed antibiotics with deleterious side effects to the inner ear. Due to their popular application as a result of their potent antimicrobial activities, many efforts have been undertaken to prevent aminoglycoside ototoxicity. Over the years, understanding of the antimicrobial as well as ototoxic mechanisms of aminoglycosides has increased. These mechanisms are reviewed in regard to established and potential future targets of hair cell protection.
Resumo:
The dynamic responses of the hearing organ to acoustic overstimulation were investigated using the guinea pig isolated temporal bone preparation. The organ was loaded with the fluorescent Ca2+ indicator Fluo-3, and the cochlear electric responses to low-level tones were recorded through a microelectrode in the scala media. After overstimulation, the amplitude of the cochlear potentials decreased significantly. In some cases, rapid recovery was seen with the potentials returning to their initial amplitude. In 12 of 14 cases in which overstimulation gave a decrease in the cochlear responses, significant elevations of the cytoplasmic [Ca2+] in the outer hair cells were seen. [Ca2+] increases appeared immediately after terminating the overstimulation, with partial recovery taking place in the ensuing 30 min in some preparations. Such [Ca2+] changes were not seen in preparations that were stimulated at levels that did not cause an amplitude change in the cochlear potentials. The overstimulation also gave rise to a contraction, evident as a decrease of the width of the organ of Corti. The average contraction in 10 preparations was 9 μm (SE 2 μm). Partial or complete recovery was seen within 30–45 min after the overstimulation. The [Ca2+] changes and the contraction are likely to produce major functional alterations and consequently are suggested to be a factor contributing strongly to the loss of function seen after exposure to loud sounds.
Resumo:
The Brn-3 subfamily of POU–domain transcription factor genes consists of three highly homologous members—Brn-3a, Brn-3b, and Brn-3c—that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the Brn-3a and Brn-3b proteins are found only in subsets of spiral and vestibular ganglion neurons. Mice carrying a targeted deletion of the Brn-3c gene are deaf and have impaired balance. These defects reflect a complete loss of auditory and vestibular hair cells during the late embryonic and early postnatal period and a secondary loss of spiral and vestibular ganglion neurons. Together with earlier work demonstrating a loss of trigeminal ganglion neurons and retinal ganglion cells in mice carrying targeted disruptions in the Brn-3a and Brn-3b genes, respectively, the Brn-3c phenotype reported here demonstrates that each of the Brn-3 genes plays distinctive roles in the somatosensory, visual, and auditory/vestibular systems.
Resumo:
The L-type voltage-gated Ca2+ channels that control tonic release of neurotransmitter from hair cells exhibit unusual electrophysiological properties: a low activation threshold, rapid activation and deactivation, and a lack of Ca2+-dependent inactivation. We have inquired whether these characteristics result from cell-specific splicing of the mRNA for the L-type α1D subunit that predominates in hair cells of the chicken’s cochlea. The α1D subunit in hair cells contains three uncommon exons: one encoding a 26-aa insert in the cytoplasmic loop between repeats I and II, an alternative exon for transmembrane segment IIIS2, and a heretofore undescribed exon specifying a 10-aa insert in the cytoplasmic loop between segments IVS2 and IVS3. We propose that the alternative splicing of the α1D mRNA contributes to the unusual behavior of the hair cell’s voltage-gated Ca2+ channels.
Resumo:
Transduction-channel gating by hair cells apparently requires a gating spring, an elastic element that transmits force to the channels. To determine whether the gating spring is the tip link, a filament interconnecting two stereocilia along the axis of mechanical sensitivity, we examined the tip link's structure at high resolution by using rapid-freeze, deep-etch electron microscopy. We found that the tip link is a right-handed, coiled double filament that usually forks into two branches before contacting a taller stereocilium; at the other end, several short filaments extend to the tip link from the shorter stereocilium. The structure of the tip link suggests that it is either a helical polymer or a braided pair of filamentous macromolecules and is thus likely to be relatively stiff and inextensible. Such behavior is incompatible with the measured elasticity of the gating spring, suggesting that the gating spring instead lies in series with the helical segment of the tip link.
Resumo:
Postmitotic hair-cell regeneration in the inner ear of birds provides an opportunity to study the effect of renewed auditory input on auditory perception, vocal production, and vocal learning in a vertebrate. We used behavioral conditioning to test both perception and vocal production in a small Australian parrot, the budgerigar. Results show that both auditory perception and vocal production are disrupted when hair cells are damaged or lost but that these behaviors return to near normal over time. Precision in vocal production completely recovers well before recovery of full auditory function. These results may have particular relevance for understanding the relation between hearing loss and human speech production especially where there is consideration of an auditory prosthetic device. The present results show, at least for a bird, that even limited recovery of auditory input soon after deafening can support full recovery of vocal precision.
Resumo:
Vertebrate sensory hair cells achieve high sensitivity and frequency selectivity by adding self-generated mechanical energy to low-level signals. This allows them to detect signals that are smaller than thermal molecular motion and to achieve significant resonance amplitudes and frequency selectivity despite the viscosity of the surrounding fluid. In nonmammals, a great deal of in vitro evidence indicates that the active process responsible for this amplification is intimately associated with the hair cells' transduction channels in the stereovillar bundle. Here, we provide in vivo evidence of hair-cell bundle involvement in active processes. Electrical stimulation of the inner ear of a lizard at frequencies typical for this hearing organ induced low-level otoacoustic emissions that could be modulated by low-frequency sound. The unique modulation pattern permitted the tracing of the active process involved to the stereovillar bundles of the sensory hair cells. This supports the notion that, in nonmammals, the cochlear amplifier in the hair cells is driven by a bundle motor system.
Resumo:
The vestibules of adult guinea pigs were lesioned with gentamicin and then treated with perilymphatic infusion of either of two growth factor mixtures (i.e., GF I or GF II). GF I contained transforming growth factor α (TGFα), insulin-like growth factor type one (IGF-1), and retinoic acid (RA), whereas GF II contained those three factors and brain-derived neurotrophic factor. Treatment with GF I significantly enhanced vestibular hair cell renewal in ototoxin-damaged utricles and the maturation of stereociliary bundle morphology. The addition of brain-derived neurotrophic factor to the GF II infusion mixture resulted in the return of type 1 vestibular hair cells in ototoxin-damaged cristae, and improved vestibular function. These results suggest that growth factor therapy may be an effective treatment for balance disorders that are the result of hair cell dysfunction and/or loss.
Resumo:
A decade ago it was discovered that mature birds are able to regenerate hair cells, the receptors for auditory perception. This surprising finding generated hope in the field of auditory neuroscience that new hair cells someday may be coaxed to form in another class of warm-blooded vertebrates, mammals. We have made considerable progress toward understanding some cellular and molecular events that lead to hair cell regeneration in birds. This review discusses our current understanding of avian hair cell regeneration, with some comparisons to other vertebrate classes and other regenerative systems.
Resumo:
Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.