968 resultados para habitat quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops a dynamic model for cost-effective selection of sites for restoring biodiversity when habitat quality develops over time and is uncertain. A safety-first decision criterion is used for ensuring a minimum level of habitats, and this is formulated in a chance-constrained programming framework. The theoretical results show; (i) inclusion of quality growth reduces overall cost for achieving a future biodiversity target from relatively early establishment of habitats, but (ii) consideration of uncertainty in growth increases total cost and delays establishment, and (iii) cost-effective trading of habitat requires exchange rate between sites that varies over time. An empirical application to the red listed umbrella species - white-backed woodpecker - shows that the total cost of achieving habitat targets specified in the Swedish recovery plan is doubled if the target is to be achieved with high reliability, and that equilibrating price on a habitat trading market differs considerably between different quality growth combinations. © 2013 Elsevier GmbH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment sampling was used to evaluate chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) spawning habitat quality in the South Fork Trinity River (SFTR) basin. Sediment samples were collected using a McNeil-type sampler and wet sieved through a series of Tyler screens (25.00 mm, 12.50 mm, 6.30 mm, 3.35 mm, 1.00 mm, and 0.85 mm). Fines (particles < 0.85 mm) were determined after a l0-minute settling period in Imhoff cones. Thirteen stations were sampled in the SFTR basin: five stations were located in mainstem SFTR between rk 2.1 and 118.5, 2 stations each were located in EF of the SFTR, Grouse Creek, and Madden Creek, and one station each was located in Eltapom and Hayfork Creeks. Sample means for fines(particles < 0.85 mm) fer SFTR stations ranged between 14.4 and 19.4%; tributary station sample mean fines ranged between 3.4 and 19.4%. Decreased egg survival would be expected at 4 of 5 mainstem SFTR stations and at one station in EF of SFTR and Grouse Creek where fines content exceed 15%. Small gravel/sand content measured at all stations were high, and exceed levels associated with reduced sac fry emergence rates. Reduction of egg survival or sac fry emergence due to sedimentation in spawning gravels could lead to reduced juvenile production from the South Fork Trinity River. (PDF contains 18 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated habitat quality for juvenile California halibut (Paralichthys californicus) in a Pacific Coast estuary lacking in strong salinity gradients by examining density, recent otolith growth rates, and gut fullness levels of wild-caught and caged juveniles for one year. Juveniles <200 mm standard length were caught consistently in the inner, central, and outer sections of the estuary. The density of juveniles was two times higher in the inner estuary during most of the year, consistent with active habitat selection by part of the population. A generalized linear model indicated temperature, sampling time, and the interaction between salinity and temperature were significantly related to density. However, the model explained only 21% of the variance. Gut fullness levels of wild-caught juveniles were highest during the summer, but recent otolith growth rates were not related to temperature. The proportion of individuals feeding successfully indicated that seasonal differences in food availability are more important than spatial variation in prey abundance in driving feeding success. Feeding success of caged fishes was limited, precluding the use of growth rates as indicators of local habitat quality. However, marginal increment widths were reliable indicators of somatic growth at low growth rates over two-week periods. The relatively high growth rates and abundance of small wild-caught juveniles found throughout the estuary indicates that the entire estuary system has the potential for serving as nursery habitat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive species pose a major threat to biodiversity but provide an opportunity to describe the processes that lead to changes in a species’ range. The bank vole (Myodes glareolus) is an invasive rodent that was introduced to Ireland in the early twentieth century. Given its continuing range expansion, the substantial empirical data on its spread thus far, and the absence of any eradication program, the bank vole in Ireland represents a unique model system for studying the mechanisms influencing the rate of range expansion in invasive small mammals. We described the invasion using a reaction–diffusion model informed by empirical data on life history traits and demographic parameters. We subsequently modelled the processes involved in its range expansion using a rule-based spatially explicit simulation. Habitat suitability interacted with density-dependent parameters to influence dispersal, most notably the density at which local populations started to donate emigrating individuals, the number of dispersing individuals and the direction of dispersal. Whilst local habitat variability influenced the rate of spread, on a larger scale the invasion resembled a simple reaction–diffusion process. Our results suggest a Type 1 range expansion where the rate of expansion is generally constant over time, but with some evidence for a lag period following introduction. We demonstrate that a two-parameter empirical model and a rule-based spatially explicit simulation are sufficient to accurately describe the invasion history of a species that exhibits a complex, density-dependent pattern of dispersal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review covers research linking foraging habitat quality for birds to livestock management in lowland farmland. Based on this research we propose a framework for predicting the value of grazing systems to birds. This predictive framework is needed to guide the development of agri-environment measures to address farmland bird declines in pastoral areas. We show that the exacting requirements of declining granivorous birds pose the greatest challenges, while the needs of soil invertebrate feeding species are more easily met.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are approximately 29,000 ha of grass buffer strips in the UK under Agri-Environment Schemes; however, typically they are floristically poor and as such are of limited biodiversity value. Introducing a sown wildflower component has the potential to increase dramatically the value of these buffer strips for a suite of native species, including butterflies. This study investigates management practices aiming to promote the establishment and maintenance of wildflowers in existing buffer strips. The effectiveness of two methods used to increase the establishment of wildflowers for the benefit of native butterfly species were tested, both individually and in combination. The management practices were: (1) the application of a selective graminicide (fluazifop-P-butyl) which reduces the dominance of competitive grasses; and (2) scarification of the soil which creates germination niches for sown wildflower seeds. A wildflower seed mix consisting of nine species was sown in conjunction with the scarification treatment. Responses of wildflowers and butterflies were monitored for two years after establishment. Results indicate that the combined scarification and graminicide treatment produced the greatest cover and species richness of sown wildflowers. Butterfly abundance, species richness and diversity were positively correlated with sown wildflower species richness, with the highest values in the combined scarification and graminicide treatment. These findings have confirmed the importance of both scarification as a means of introducing wildflower seed into existing buffer strips, and subsequent management using graminicides, for the benefit of butterflies. Application of this approach could provide tools to help butterfly conservation on farmland in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in landscape composition and structure may impact the conservation and management of protected areas. Species that depend on specific habitats are at risk of extinction when these habitats are degraded or lost. Designing robust methods to evaluate landscape composition will assist decision- and policy-making in emerging landscapes. This paper describes a rapid assessment methodology aimed at evaluating landcover quality for birds, plants, butterflies and bees around seven UK Natura 2000 sites. An expert panel assigned quality values to standard Coordination of Information on the Environment (CORINE) landcover classes for each taxonomic group. Quality was assessed based on historical (1950, 1990), current (2000) and future (2030) land-cover data, the last projected using three alternative scenarios: a growth applied strategy (GRAS), a business-as-might-beusual (BAMBU) scenario, and sustainable European development goal (SEDG) scenario. A quantitative quality index weighted the area of each land-cover parcel with a taxa-specific quality measure. Land parcels with high quality for all taxonomic groups were evaluated for temporal changes in area, size and adjacency. For all sites and taxonomic groups, the rate of deterioration of land-cover quality was greater between 1950 and 1990 than current rates or as modelled using the alternative future scenarios (2000– 2030). Model predictions indicated land-cover quality stabilized over time under the GRAS scenario, and was close to stable for the BAMBU scenario. The SEDG scenario suggested an ongoing loss of quality, though this was lower than the historical rate of c. 1% loss per decade. None of the future scenarios showed accelerated fragmentation, but rather increases in the area, adjacency and diversity of high quality land parcels in the landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-distance migratory birds are declining globally and migration has been identified as the primary source of mortality in this group. Despite this, our lack of knowledge of habitat use and quality at stopovers, i.e., sites where the energy for migration is accumulated, remains a barrier to designing appropriate conservation measures, especially in tropical regions. There is therefore an urgent need to assess stopover habitat quality and concurrently identify efficient and cost-effective methods for doing so. Given that fuel deposition rates directly influence stopover duration, departure fuel load, and subsequent speed of migration, they are expected to provide a direct measure of habitat quality and have the advantage of being measurable through body-mass changes. Here, we examined seven potential indicators of quality, including body-mass change, for two ecologically distinct Neotropical migratory landbirds on stopover in shade-coffee plantations and tropical humid premontane forest during spring migration in Colombia: (1) rate of body-mass change; (2) foraging rate; (3) recapture rate; (4) density; (5) flock size; (6) age and sex ratios; and (7) body-mass distribution. We found higher rates of mass change in premontane forest than in shade-coffee in Tennessee Warbler Oreothlypis peregrina, a difference that was mirrored in higher densities and body masses in forest. In Gray-cheeked Thrush Catharus minimus, a lack of recaptures in shade-coffee and higher densities in forest, also suggested that forest provided superior fueling conditions. For a reliable assessment of habitat quality, we therefore recommend using a suite of indicators, taking into account each species’ ecology and methodological considerations. Our results also imply that birds stopping over in lower quality habitats may spend a longer time migrating and require more stopovers, potentially leading to important carryover effects on reproductive fitness. Evaluating habitat quality is therefore imperative prior to defining the conservation value of newly identified stopover regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwäbische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.