1000 resultados para growth symmetry
Resumo:
The underlying mechanisms for the nucleation of carbon nanotubes as well as their helicity, remain elusive. Here, using van der Waals dispersion force calculations implemented within density functional theory, we study the cap formation, believed to be responsible for the chirality of surface-catalyzed carbon nanotubes. We find the energetics associated with growth along different facets to be independent of the surface orientation and that the growth across an edge along the axis of the metal particle leads to a perfect honeycomb lattice in a curved geometry. The formation of defects in the graphene matrix, which bend the carbon plane, requires that two or more graphene embryos with significantly different growth axis merge. Such scenario is only possible at the front- or back-end of the metal particle where growth symmetry is broken. The graphene embryos reconstruct their hexagonal structure into pentagons, heptagons, and octagons counterpart to accommodate the tube curvature.
Resumo:
The aim of this study was to determine how thallus symmetry could be maintained in foliose lichens when variation in the growth of individual lobes may be high. Hence, the radial growth of a sample of lobes was studied monthly, over 22 months, in 7 thalli of Parmelia conspersa (Ehrh. Ex Ach.) Ach. And 5 thalli of P. glabratula ssp fuliginosa (fr. ex Duby) Laund. The degree of variation in the total radial growth of different lobes within a thallus over 22 months varied between thalli. Individual lobes showed a fluctuating pattern of radial growth from month to month with alternating periods of fast and slow growth. Monthly variations in radial growth of different lobes were synchronized in some but not in all thalli. Few significant correlations were found between the radial growth of individual lobes and total monthly rainfall or shortwave radiation. The levels of ribitol, arabitol and mannitol were measured in individual lobes. All three polyols varied significantly between lobes within a thallus suggesting that variations in algal phostosynthesis and in the partitioning of fungal polyols may contribute to lobe growth variation. The effect on thallus symmetry of lobes which grew radially either consistently faster or slower than average was studied. Slow growing lobes were overgrown, and gaps in the perimeter were eliminated by the growth of neighbouring lobes, in approximately 7 to 9 months. However, a rapidly growing lobe, with its neighbours removed on either side, continued to grow radially at the same rate as rapidly growing control lobes. The results suggested that lobe growth variation results from a combination of factors which may include the origin of the lobes, lobe morphology and the patterns of algal cell division and hyphal elongation in different lobes. No convincing evidence was found to suggest that exchange of carbohydrate occurred between lobes which would tend to equalize their radial growth. Hence, the fluctuating pattern of lobe growth observed may be sufficient to maintain a degree of symmetry in most thalli. In addition, slow growing lobes would tend to be overgrown by faster growing neighbours thus preventing the formation of indentations in the thallus perimeter.
Resumo:
We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.
Resumo:
The growth history of two populations of snowball garnet from the Lukmanier Pass area (central Swiss Alps) was examined through a detailed analysis of three-dimensional geometry, chemical zoning and crystallographic orientation. The first population, collected in the hinge of a chevron-type fold, shows an apparent rotation of 360 degrees. The first 270 degrees are characterized by spiral-shaped inclusion trails, gradual and concentric Mn zoning and a single crystallographic orientation, whereas in the last 90 degrees, crenulated inclusion trails and secondary Mn maxima centred on distinct crystallographic garnet domains are observed. Microstructural, geochemical and textural data indicate a radical change in growth regime between the two growth sequences. In the first 270 degrees, growth occurred under rotational non-coaxial flow, whereas in the last 90 degrees, garnet grew under a non-rotational shortening regime. The second population, collected in the limb of the same chevron-type fold structure, is characterized by a spiral geometry that does not exceed 270 degrees of apparent rotation. These garnet microstructures do not record any evidence for a modification of the stress field during garnet growth. Concentric Mn zoning as well as a single crystallographic orientation are observed for the entire spiral. Electron backscatter diffraction data indicate that nearly all central domains in the snowball garnet are characterized by one [001] axis oriented (sub-)parallel to the symmetry axis and by another [001] axis oriented (sub-)parallel to the orientation of the internal foliation. These features suggest that the crystallographic orientation across the garnet spiral is not random and that a relation exists among the symmetry axis, the internal foliation and the crystallographic orientation.
Resumo:
Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.
Resumo:
Described herein is the chemoenzymatic total synthesis of several Amaryllidaceae constituents and their unnatural C-I analogues. A new approach to pancratistatin and related compounds will be discussed along with the completed total synthesis of 7 -deoxypancratistatin and trans-dihydrolycoricidine. Evaluation of all new C-l analogues as cancer cell growth inhibitory agents is described. The enzymatic oxidation of dibromobenzenes by Escherichia coli 1M 109 (pDTG60 1) is presented along with conversion of their metabolites to (-)-conduritol E. Investigation into the steric and functional factors governing the enzymatic dihydroxylation of various benzoates by the same organism is also discussed. The synthetic utility of these metabolites is demonstrated through their conversion to pseudo-sugars, aminocyclitols, and complex bicyclic ring systems. The current work on the total synthesis of some morphine alkaloids is also presented. Highlighted will be the synthesis of several model systems related to the efficient total synthesis of thebaine.
Resumo:
The growth and magnetic properties of Tin Selenide (SnSe) doped with Eu(2+) Sn(1-x)Eu(x)Se (x=2.5%) were investigated. Q-band (34 GHz) electron paramagnetic resonance measurements show that the site symmetry of Eu(2+) at 4.2 K is orthorhombic and the Lande factor was determined to be g=1.99 +/- 0.01. The exchange coupling between nearest-neighbor (NN) Eu(2+) ions was estimated from magnetization and magnetic-susceptibility measurements using a model that takes into account the magnetic contributions of single ions, pairs and triplets. The exchange interaction between Eu(2+) nearest neighbors was found to be antiferromagnetic with an estimated average value of J(p)/k(B) =-0.18 +/- 0.03 K. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
High energy band gap hosts doped with lanthanide ions are suitable for optical devices applications To study the potential of Ta(2)O(5) as a host compound pure and Eu(2)O(3)-doped Ta(2)O(5) crystal fibers were grown by the laser-heated pedestal growth technique in diameters ranging from 250 to 2600 pm and in lengths of up to 50 mm The axial temperature gradient at the solid/liquid interface of pure Ta(2)O(5) fibers revealed a critical diameter of 2200 gm above which the fiber cracks X-ray diffraction measurements of the pure Ta(2)O(5) single crystals showed a monoclinic symmetry and a growth direction of [1 (1) over bar 0] An analysis of the pulling rate as a function of the fiber diameter for Eu(2)O(3)-doped Ta(2)O(5) fibers indicated a well defined region in which constitutional supercooling is absent Photoluminescence measurements of pure Ta(2)O(5) crystals using excitation above the band gap (3 8 eV) were dominated by a broad unstructured green band that peaked at 500 nm Three Eu(3+)-related optical centers were identified in the doped samples with nominal concentrations exceeding 1 mol% Two of these centers were consistent with the ion in the monoclinic phase with different oxygen coordinations The third one was visible in the presence of the triclinic phase (C) 2010 Elsevier B V All rights reserved
Resumo:
Up to now the raise-and-peel model was the single known example of a one-dimensional stochastic process where one can observe conformal invariance. The model has one parameter. Depending on its value one has a gapped phase, a critical point where one has conformal invariance, and a gapless phase with changing values of the dynamical critical exponent z. In this model, adsorption is local but desorption is not. The raise-and-strip model presented here, in which desorption is also nonlocal, has the same phase diagram. The critical exponents are different as are some physical properties of the model. Our study suggests the possible existence of a whole class of stochastic models in which one can observe conformal invariance.
Resumo:
We investigate the nonequilibrium roughening transition of a one-dimensional restricted solid-on-solid model by directly sampling the stationary probability density of a suitable order parameter as the surface adsorption rate varies. The shapes of the probability density histograms suggest a typical Ginzburg-Landau scenario for the phase transition of the model, and estimates of the "magnetic" exponent seem to confirm its mean-field critical behavior. We also found that the flipping times between the metastable phases of the model scale exponentially with the system size, signaling the breaking of ergodicity in the thermodynamic limit. Incidentally, we discovered that a closely related model not considered before also displays a phase transition with the same critical behavior as the original model. Our results support the usefulness of off-critical histogram techniques in the investigation of nonequilibrium phase transitions. We also briefly discuss in the appendix a good and simple pseudo-random number generator used in our simulations.
Resumo:
Under the global change scenario, the possible effects of ocean warming were investigated on the larvae of five species of Caribbean Echinoids: Echinometra lucunter, Echinometra viridis, Clypeaster rosaceus, Tripneustes ventricosus and Lytechinus williamsi. Their thermal tolerance was evaluated rearing them for six days under different temperature regimes (26, 28, 30, 32, 34, 36°C). The larval sensitivity to the treatments was evaluated on the base of survival and growth. The rearing at higher temperatures has revealed a great suffering state of the larvae by inducing both reduction of live larvae and abnormality in their development. The extent of impact of the treatments varied from species to species, evidencing different levels of thermal tolerance. Anyway, higher temperature treatments have shown a general lethal threshold at about 34°C for most of the species. As an exception, the lethal threshold of Echinometra species was 36°C, few larvae of which being still capable of survive at the temperature of 34°C. The studies have also analyzed the effect of water warming on the larvae growth in terms of size and symmetry. The results put in evidence the presence of a critical upper temperature (about 32°C) at which the larvae of all species reveal a great suffering state that translates in the reduction of size (i.e., of body, stomach and postero-dorsal arm) and abnormalities (i.e., strong difference in the lengths of the two postero-dorsal arms). As sea surface temperatures are predicted to increase of 4-5°C by 2100, the high percentage of abnormal larvae and their scarce survival observed at 32- 34°C treatments indicate that the early stages of these species could be affected by future global warming.
Resumo:
Plastic yield criteria for porous ductile materials are explored numerically using the finite-element technique. The cases of spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic arrays are investigated with void volume fractions ranging from 2 % through to the percolation limit (over 90 %). Arbitrary triaxial macroscopic stress states and two definitions of yield are explored. The numerical data demonstrates that the yield criteria depend linearly on the determinant of the macroscopic stress tensor for the case of simple-cubic and body-centred cubic arrays - in contrast to the famous Gurson-Tvergaard-Needleman (GTN) formula - while there is no such dependence for face-centred cubic arrays within the accuracy of the finite-element discretisation. The data are well fit by a simple extension of the GTN formula which is valid for all void volume fractions, with yield-function convexity constraining the form of the extension in terms of parameters in the original formula. Simple cubic structures are more resistant to shear, while body-centred and face-centred structures are more resistant to hydrostatic pressure. The two yield surfaces corresponding to the two definitions of yield are not related by a simple scaling.
Resumo:
This study determined whether the radial growth of lobes of the foliose lichen Parmelia conspersa (Ehrh. ex Ach.)Ach. was influenced by the radial growth and morphology of their closest neighbours and whether such interactions influence thallus symmetry. The radial growth and morphology of a sample of adjacent lobes from six thalli was measured. Positive correlations were observed between radial growth and lobe width in three thalli and with the degree of bifurcation of the lobe in two thalli. Negative correlations between the radial growth of adjacent lobes were observed in four thalli suggesting that faster growing lobes may inhibit the growth of their neighbours.Lobes glued next to individual lobes had no signifiacnt effect on the radial growth of wide or narrow lobes. Lobes glued 1-2 mm in front of their neighbours exhibited an intital phase of increased radial growth and then a phase of slower growth. Radial growth decreased when the lobes were glued 2 mm behind their neighbours and these lobes were essentially eliminated by the growth of the adjacent lobes. The data suggest that lobe interactions may incresae lobe growth variation within a thallus. However, the decrease in radial growth of lobes which protrude from the margin and the elimination of slower growing lobes may help to maintain thallus symmetry.
Resumo:
The radial growth (RG) of 120 lobes from 35 thalli of the foliose lichen Parmelia conspersa (Ehrh. ex Ach.) Ach. was studied monthly over 22 months in south Gwynedd, Wales, UK. Autocorrelation analysis of each lobe identified three patterns of fluctuation: 1) random fluctuations (58% of lobes), 2) a cyclic pattern of growth (23% of lobes), and 3) fluctuating growth interrupted by longer periods of very low or zero growth (19% of lobes). In 80% of thalli, two or three patterns of fluctuation were present within the same thallus. Growth fluctuations were correlated with climatic variables in 31% of lobes, most commonly with either total rainfall or number of rain days per month. Lobes correlated with climate were not associated with a particular type of growth fluctuation. RG of a lobe was positively correlated with the degree of bifurcation of the lobe tip. It is hypothesised that lobes of P. conspersa exhibit a cyclic pattern of growth due in part to lobe division. The effects of climate, periods of zero growth, and microvariations in the environment of a lobe are superimposed on this cyclic pattern resulting in the random growth of many lobes. Random growth fluctuations may contribute to the maintenance of thallus symmetry in P. conspersa.