884 resultados para growth analysis
Resumo:
Plant growth analysis presents difficulties related to statistical comparison of growth rates, and the analysis of variance of primary data could guide the interpretation of results. The objective of this work was to evaluate the analysis of variance of data from distinct harvests of an experiment, focusing especially on the homogeneity of variances and the choice of an adequate ANOVA model. Data from five experiments covering different crops and growth conditions were used. From the total number of variables, 19% were originally homoscedastic, 60% became homoscedastic after logarithmic transformation, and 21% remained heteroscedastic after transformation. Data transformation did not affect the F test in one experiment, whereas in the other experiments transformation modified the F test usually reducing the number of significant effects. Even when transformation has not altered the F test, mean comparisons led to divergent interpretations. The mixed ANOVA model, considering harvest as a random effect, reduced the number of significant effects of every factor which had the F test modified by this model. Examples illustrated that analysis of variance of primary variables provides a tool for identifying significant differences in growth rates. The analysis of variance imposes restrictions to experimental design thereby eliminating some advantages of the functional growth analysis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present research analyses the adequacy of the widely used Career Satisfaction Scale (CSS; Greenhaus, Parasuraman, & Wormley, 1990) for measuring change over time. We used data of a sample of 1,273 professionals over a 5-year time period. First, we tested longitudinal measurement invariance of the CSS. Second, we analysed changes in career satisfaction by means of multiple indicator latent growth modelling (MLGM). Results revealed that the CSS can be reliably used in mean change analyses. Altogether, career satisfaction was relatively stable over time; however, we found significant variance in intra-individual growth trajectories and a negative correlation between the initial level of and changes in career satisfaction. Professionals who were initially highly satisfied became less satisfied over time. Theoretical and practical implications with respect to the construct of career satisfaction and its development over time (i.e., alpha, beta, and gamma change) are discussed.
Resumo:
The aim of this study was to characterize the agronomic performance of three elite genotypes of common bean with early cycle by growth analysis technique.
Resumo:
This objective of this study was to evaluate the effects of different methods of red beet seedling production and direct sowing on the development of the plant in field conditions. 'Tall Top Early Wonder' was used as the cultivar. The experimental design was a randomized blocks with 4 replications of each treatment: T1 - seedling produced in trays of 288 cells; T2 - 200 cells; T3 - 128 cells; T4 - 128 cells; T5 - direct sowing and T6 - bare-root seedling. The seedlings produced in trays and bare root seedlings were transplanted in the field 28 DAS with spacing of 0.20 x 0.10m. The mean height of plants, leaf area, leaf dry matter, petiole dry matter, shoot dry matter, root dry matter, relationship between shoot dry matter and root dry matter, absolute growth rate, relative growth rate, net assimilation rate, leaf area ratio and specific leaf area were determined. Storage root fresh matter and mean storage root diameter were determined starting from 77 DAS. Initial growth of the plants were superior for the direct sowing, resulting in smaller RGR and NAR than the other treatments. Independent of the production method, an increase of the cycle of the crop was verified. T6 had larger delay in the initial development. There was no difference for productivity. Method T1, had less expenses with respect to substrate and space in the vegetation home, without reduction in production.
Resumo:
Allometric growth analysis on chelac dimensions vs. carapace length (CL) was employed to estimate average size at the onset of morphometric maturity (= puberty molt) and sexual dimorphism regarding the pair of chelae in Aegla franca. Males attain morphometric maturity (12.15 mm of CL) at a larger size than females (10.93 mm of CL). After the puberty molt, an additional change in the allometry level regarding chelae dimensions was detected in adult males (average CL = 19.00 mm). As a result, two sequential morphotype groups of adult males, herein designated as morphotype I and morphotype II, were recognized according to the state of development of the pair of claws. We postulate that the second change in this allometry level is related to functional maturity in this sex, based on the following observations: 1) temporal variation in the proportion between the two morphotype groups reveals that morphotype II individuals make up most of adult males in the population at the beginning of the seasonal reproductive period of the species, and 2) morphotype II males show a more robust pair of claws as compared to the predecessor morphotype, which might represent an advantageous trait in reproductive competition. Males and females of Aegla franca are heterochelous with handedness preponderance of the left chela. Claw size is a distinct dimorphic trait in this species, being significantly larger in male specimens.
Resumo:
A methodology for the computational modeling of the fatigue crack growth in pressurized shell structures, based on the finite element method and concepts of Linear Elastic Fracture Mechanics, is presented. This methodology is based on that developed by Potyondy [Potyondy D, Wawrzynek PA, Ingraffea, AR. Discrete crack growth analysis methodology for through crack in pressurized fuselage structures. Int J Numer Methods Eng 1995;38:1633-1644], which consists of using four stress intensity factors, computed from the modified crack integral method, to predict the fatigue propagation life as well as the crack trajectory, which is computed as part of the numerical simulation. Some issues not presented in the study of Potyondy are investigated herein such as the influence of the crack increment size and the number of nodes per element (4 or 9 nodes) on the simulation results by means of a fatigue crack propagation simulation of a Boeing 737 airplane fuselage. The results of this simulation are compared with experimental results and those obtained by Potyondy [1]. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Tissue responses to the application of Rototags and Jumbo Rototags in the first dorsal fin of Carcharhinus melanopterus, C. obscurus and C. plumbeus were examined. The acute response included tissue tearing and haemorrhage and was present by 5 days post-tagging. The intermediate response had begun by 20 days post-tagging and continued beyond 207 days. This response involved decreased red blood cell activity as the inflammatory response commenced. The chronic response had begun by 301 days and was complete by 553 days with a layer of fibrous connective tissue walling off the tag. External damage to the fin was caused by continued abrasion by the tag. Repair scales were observed at 242 days using scanning electron microscopy and were confirmed histologically in 61- and 553-day samples. Repair scales were not seen in areas of continuous abrasion. No infection was observed in tissues surrounding the wound. Disruption of the fin surface was observed due to abrasion by the tag, but did not appear to cause a severe tissue reaction. The tissue responses observed were consistent with a normal, but relatively slow, healing in the vicinity of the tag wound. Use of Rototags or Jumbo Rototags appears to be an efficient way of marking elasmobranchs with minimal damage to the shark. (C) 1998 The Fisheries Society of the British Isles.
Resumo:
The use of cover crops in no-tillage systems can provide better conditions for the development of soybean plants with positive effects on grain yield and growth analysis techniques allow researchers to characterize and understand the behavior of soybean plants under different straw covers. Thus, the aim of this study was to characterize, using growth analysis, yield components and agronomic performance of soybean under common bean, Brachiaria brizantha and pearl millet straws. The experiment was performed on a soil under cerrado in the municipality of Santo Antônio de Goiás, GO. The experiment was arranged in a randomized complete block design with three treatments (cover crops) and five replications. Soybean grain yield was lower in the B. brizantha straw treatment (3,708 kg ha-1) than both in the pearl millet (4.772 kg ha-1) and common bean straw treatments (5,200 kg ha-1). The soybean growth analysis in B. brizantha, pearl millet and common bean allowed characterizing the variation in the production of dry matter of leaves, stems, pods and total and leaf area index that provided different grain yields. The cover crop directly affects the soybean grain yield.
Resumo:
ABSTRACT Sorghum arundinaceum (Desv.) Stapf is a weed that belongs to the Poaceae family and is widespread throughout Brazil. Despite the frequent occurrence, infesting cultivated areas, there is little research concerning the biology and physiology of this species. The objective of this research was to evaluate the growth, carbon partitioning and physiological characteristics of the weed Sorghum arundinaceum in greenhouse. Plants were collected at regular intervals of seven days, from 22 to 113 days after transplanting (DAT). In each sample, we determined plant height, root volume, leaf area and dry matter, and subsequently we perfomed the growth analysis, we have determined the dry matter partitioning among organs, the accumulation of dry matter, the specific leaf area, the relative growth rate and leaf weight ratio. At 36, 78 and 113 DAT, the photosynthetic and transpiration rates, stomatal conductance, CO2 concentration and chlorophyll fluorescence were evaluated. The Sorghum arundinaceum reached 1.91 in height, with slow initial growth and allocated much of the biomass in the roots. The photosynthetic rate and the maximum quantum yield of FSII are similar throughout the growth cycle. At maturity the Sorghum arundinaceum presents higher values of transpiration rate, stomatal conductance and non-photochemical quenching coefficient (NPQ).
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.
Resumo:
In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits.
Resumo:
The effects of shade on growth, biomass allocation patterns and photosynthetic response was examined for Rolandra fruticosa (L.) Kuntze, a common perennial weed shrub in cultivated pastures and agricultural areas of Brazilian Amazonia, for plants grown in full sunlight and those shaded to 30 % of full sunlight over a 34-d period. Specific leaf area and leaf area ratio were higher for shade plants during all the experimental period. Shade plants allocated significantly less biomass to root tissue than sun plants and relative growth rate was higher in sun plants. Sun leaves had significantly higher dark respiration and light saturated rates of photosynthesis than shade leaves. The apparent quantum efficiency was higher for shade leaves, while light compensation point was higher for sun leaves. These results are discussed in relation to their ecological and weed management implications.