936 resultados para groundwater sampling


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The United States Environmental Protection Agency (EPA) has requested the Iowa Department of Public Health (IDPH) to evaluate the health impacts associated with exposure to contaminants of concern that have been found at the former Chamberlain Manufacturing Site. The EPA has been involved in the investigation and remediation of the Former Chamberlain Manufacturing Site since 2005. As part of these investigative activities, on-site soil sampling and both on-and off-site groundwater sampling has been completed. In addition, sub-slab soil gas, indoor air, and ambient air sampling at properties located near the Former Chamberlain Manufacturing Site has been completed. This health consultation addresses potential health risks to the public from exposure to the soil, groundwater and potential vapors within homes or buildings at or near the Former Chamberlain Manufacturing Site. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tämä diplomityö tehtiin Neste Oil Oyj:n Kehittäminen ja Laboratoriot yksikön HSE-palveluille. Työn tavoitteena oli arvioida Neste Oilin ympäristövaikutusten velvoitetarkkailujen mittaustulosten epävarmuutta. Tarkastelu koski ilmanlaadun SO2-, NO2-, TRS- sekä O3-mittauksia, ympäristömelumittauksia sekä pohjavesinäytteenottoa. Ympäristönsuojelulaki (86/2000) velvoittaa tuotantolaitoksia selvittämään toimintansa ympäristövaikutukset. Myös esimerkiksi akkreditoitaessa menetelmiä mittausepävarmuus on tunnettava. On arvioitu, että tulevaisuudessa direktiivit tulevat tiukentamaan päästöraja-arvoja ja mittausepävarmuuden käsite tulee käyttöön kaikilla ympäristösektoreilla.Tässä työssä ilmanlaadun mittausepävarmuus arvioitiin vertaamalla Neste Oilin mittaustuloksia Ilmatieteenlaitoksen vertailumittausten ja kalibrointien tuloksiin. Ympäristömelun mittausepävarmuus arvioitiin Ympäristöministeriön ympäristömelunmittausohjeen (1/1995)mukai-sesti. Pohjavesinäytteenoton mittausepävarmuus arvioitiin laskemalla haitta-aineiden ajallisen vaihtelun, näytteenottomenetelmien, näytteiden kuljetuksenja säilytyksen aiheuttaman kontaminaation sekä analyysivaiheen epävarmuustekijöiden yhdistetty mittausepävarmuus. Tarkastelussa todettiin, että ilmanlaadunmittaustulokset eivät poikenneet merkittävästi vertai-lumittausten ja kalibrointien tuloksista. Menetelmien laajennetuksi mittausepävarmuudeksi saatiin 6-8 %. Ympäristömelun mittausepävarmuus vastasi ympäristömelunmittausohjeessa esitettyjä arvoja ja vaihtelivat 2-10 dB:n välillä, riippuen mittausetäisyydestä ja mittauskertojen lukumäärästä. Pohjavesinäytteenoton mittausepävarmuudelle ei ole asetettu laatutavoitteita. Tässä tarkastelussa pohjavesinäytteenoton mittausepävarmuudeksi saatiin 33 %.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The University of British Columbia (UBC) began performing piezocone penetration tests (CPTU) with electrical resistivity measurements (RCPTU) in 1989. Since then, RCPTU research at UBC has focused on obtaining geo-environmental parameters such as fluid resistivity and soil engineering properties such as porosity and degree of saturation from measurements of bulk soil electrical resistivity using the empirical relationship proposed by Archie (1942). Within this framework, the paper illustrates and discusses important design and calibration issues for resistivity modules such as the use of isolated circuitry to achieve linear calibrations over large ranges of resistivity. The suitability of RCPTU measurements for determination of geo-environmental and geotechnical parameters are assessed using typical ranges of soil and groundwater properties and methods of isolating individual factors for study are discussed. Illustrative examples of RCPTU research efforts including the environmental characterization of mine tailings, delineation of saline water intrusions in fresh water aquifers and the quality control of geotechnical ground densification are presented throughout the text. It is shown that groundwater temperature and hence ion mobility is not significantly altered by frictional heat generated during piezocone penetration and that ratio-based approaches to monitoring soil porosity can be used to eliminate the requirement for extensive groundwater sampling programs. Lastly, it is shown that RCPTU measurements above the water table can only be made using resistivity modules that are stable over a large range of resistivities and that such measurements are the most difficult to interpret because of grain surface conduction effects and generally unknown fluid resistivities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Geociências e Meio Ambiente - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Casos de contaminação de aquíferos fraturados são bastante complexos, tendo em vista a heterogeneidade das redes de fraturas, e no geral, sua investigação demanda a utilização de técnicas pouco usuais, como por exemplo o imageamento acústico e a perfilagem de velocidade de fluxo de água. Na área de estudo, localizada em Valinhos/SP, o uso inadequado de solventes organoclorados no passado ocasionou a contaminação do aquífero raso em duas áreas, e o aparecimento de concentrações no aquifero profundo levaram a condução do atual trabalho, que teve como principal objetivo a elaboração de um modelo conceitual de fluxo de água e transporte de contaminantes no aquífero cristalino. Previamente à investigação do aquífero fraturado, foi realizada uma análise de trabalhos existentes, incluindo a interpretação de lineamentos, levantamentos geológicos além de perfilagens geofísicas de superfície. Em cada área investigada, foi realizada a perfuração de um poço profundo e aplicadas as técnicas de perfilagens de raios gama, cáliper, flowmeter, imageamento acústico, além da filmagem do poço e realização de ensaios hidráulicos nos dois pontos perfurados. Para caracterização química do aquífero fraturado, foram realizadas coletas de água subterrânea em intervalos selecionados com a utilização de obturadores pneumáticos. As cargas hidráulicas medidas durante a amostragem também auxiliaram no entendimento da direção do fluxo de água. O aquífero cristalino é formado por rochas gnáissicas e se encontra bastante fraturado e intemperizado, principalmente na porção superficial da rocha (até aproximadamente 65,0 m) onde as maiores velocidades de fluxo de água também foram observadas. A rocha sã possui uma menor densidade de fraturas e predominância de minerais mais claros. As fraturas de baixo a médio angulo de mergulho (Grupo 1) são as mais frequentes em ambas as perfurações e possuem direção principal N-S a NE-SW. São observadas, no geral, exercendo grande influência sobre o fluxo de água, principalmente na porção alterada do gnaisse. Fraturas com ângulo elevado de mergulho, classificadas como Grupo 2 (paralelas à foliação) e Grupo 3 (direção NW à W), são também observadas ao longo de toda a perfuração estabelecendo a conexão hidráulica entre as fraturas do Grupo 1. Em menor proporção, são ainda verificadas fraturas com ângulos de mergulho >40 ° pertencente aos Grupos 4 (NE-SW), 5 (E-W), 6 (NW-SE) e 7 (E-W). O fluxo de água subterrânea se mostrou descendente na porção superior da rocha alterada e ascendente na porção mais profunda, possivelmente direcionando a água subterrânea para a região de transição da rocha mais alterada para a rocha sã (entre 61 a 65 m de profundidade). Apesar do fluxo ascendente em profundidade, o bombeamento de poços tubulares existentes no entorno ao longo dos anos, favoreceu a migração dos contaminantes para porções mais profundas. Os contaminantes observados no poço tubular P6 possuem maior semelhança com os contaminantes observados na Área 2, e ambos estão localizados entre lineamentos NW-SE, indicando uma possível influência dos lineamentos no controle sobre o fluxo de água. No entanto, para entendimento do transporte dos contaminantes em área, é necessário um adensamento da rede de monitoramento, levando em consideração a heterogeneidade do meio e as incertezas relacionadas à extrapolação dos dados para áreas não investigadas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The assembling of a system for field sampling and activity concentration measurement of radon dissolved in groundwater is described. Special attention is given in presenting the calibration procedure to obtain the radon activity concentration in groundwater from the raw counting rate registered in a portable scintillation detector and in establishing the precision of the activity concentration measurements. A field procedure was established and the system tested during one year of monthly observations of (222)Rn activity concentration in groundwater drawn from two wells drilled on metamorphic rocks exposed at Eastern Sao Paulo State, Brazil. The observed mean (222)Rn activity concentrations are 374 Bq/dm(3) in one well and about 1275 Bq/dm(3) in the other one. In both wells the (222)Rn activity concentrations showed a seasonal variation similar to variations previously reported in the literature for the same region. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that septic tank systems are a major source of groundwater pollution. Many public health workers feel that the most cri^cal aspect of the use of septic tanks as a means of sewage disposal is the contamination of private water wells with attendant human health hazards. In this study the movement and attenuation of septic tank effluents in a range of soil/overburden types and hydrogeological situations was investigated. The suitability of a number of chemical and biological tracer materials to monitor the movement of septic tank effluent constituents to groundwater sources was also examined. The investigation was divided into three separate but inteiTelated sections. In the first section of the study the movement of septic tank effluent from two soil treatment systems was investigated by direct measurements of soil nutrient concentrations and enteric bacterial numbers in the soil beneath and downgradient of the test systems. Two sites with different soil types and hydrogeological characteristics were used. The results indicated that the attenuation of the effluent in both of the treatment systems was incomplete. Migration of nitrate, ammonium, phosphate and fecal bacteria to a depth of 50 cm beneath the inverts of the distribution tiles was demonstrated on all sampling occasions. The lateral migration of the pollutants was less pronounced, although on occasions high nutrients levels and fecal bacterial numbers were detected at a lateral distance of 4.0 m downgradient of the test systems. There was evidence that the degree and extent of effluent migration was increased after periods of heavy or prolonged rainfall when the attenuating properties of the treatment systems were reduced as a result of saturation of the soil. The second part of the study examined the contamination of groundwaters downgradient of septic tank soil treatment systems. Three test sites were used in the investigation. The sites were chosen because of differences in the thicknesses and nature of the unsaturated zone available for effluent attenuation at each of the locations. A series of groundwater monitoring boreholes were installed downgradient of the test systems at each of the sites and these were sampled regularly to assess the efficiency of the overburden material in reducing the polluting potential of the wastewater. Effluent attenuation in the septic tank treatment systems was shown to be incomplete, resulting in chemical and microbiological contamination of the groundwaters downgradient of the systems. The nature and severity of groundwater contamination was dependent on the composition and thickness of the unsaturated zone and the extent of weathering in the underlying saturated bedrock. The movement of septic tank effluent through soil/overburdens to groundwater sources was investigated by adding a range of chemical and biological tracer materials to the three septic tank systems used in section two of the study. The results demonstrated that a single tracer type cannot be used to accurately monitor the movement of all effluent constituents through soils to groundwater. The combined use of lithium bromide and endospores of Bacillus globigii was found to give an accurate indication of the movement of both the chemical and biological effluent constituents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological and physical processes occurring in soils may lead to significant isotopic changes between the isotopic compositions of atmospheric CO2 and of soil CO2. Also, during water and gas transport from the soil surface to the water table, isotopic changes likely occur due to numerous physical processes such as gas production and diffusion, water advection, and gas-water-rock interactions. In most cases, these changes are not included in the correction models developed for groundwater dating, whereas they can significantly impact the calculation of the 14C age. We explore the role of these processes using: i) experimental data from two aquifer sites (Fontainebleau sands and Astian sands, France), ii) a distributed model to simulate the 14C activities of soil CO2, and iii) numerical simulations in order to highlight the role of the physical processes.¦The 13C content in soil CO2 showed seasonal variations and highlighted the competition between CO2 production and CO2 diffusion. Their respective contributions played a significant role in defining the isotopic composition of CO2 at the water table. On both study sites, variations of the 14C activity in soil CO2 reflect the competition between the fluxes of root derived-CO2 and organic matter derived-CO2. Since the nuclear weapon tests in the fifties and sixties, soil CO2 became significantly depleted in 14C compared to modern atmospheric CO2. Models that take into account this 14C depletion in soil CO2 for dating modern groundwater would lead to apparent younger 14C ages than models that only consider the 14C activity in atmospheric CO2. Moreover, since 2000-2005, the inverse effect is observed as soil CO2 is enriched in 14C compared to atmospheric CO2.¦Therefore, we conclude that the isotopic composition of CO2 at the water table have to be taken into account for the dating of modern groundwater. This requires a systematic sampling of soil CO2 and the measurement of its 13C and 14C contents. We used this information in a numerical simulation to calculate the evolution of isotopic composition of CO2 from the soil surface to the water table. This simulation integrated physical processes in the unsaturated zone (e.g. CO2 production and diffusion, water advection, etc.) and gas-water-rock interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shallow groundwater beneath a former airfield site in southern England has been heavily contaminated with a wide range of chlorinated solvents. The feasibility of using bacterial biosensors to complement chemical analysis and enable cost-effective, and focussed sampling has been assessed as part of a site evaluation programme. Five different biosensors, three metabolic (Vibrio fischeri, Pseudomonas fluorescens 10568 and Escherichia coli HB101) and two catabolic (Pseudomonas putida TVA8 and E. coli DH5alpha), were employed to identify areas where the availability and toxicity of pollutants is of most immediate environmental concern. The biosensors used showed different sensitivities to each other and to the groundwater samples tested. There was generally a good agreement with chemical analyses. The potential efficacy of remediation strategies was explored by coupling sample manipulation to biosensor tests. Manipulation involved sparging and charcoal treatment procedures to simulate remediative engineering solutions. Sparging was sufficient at most locations. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The EU Water Framework Directive (WFD) requires that the ecological and chemical status of water bodies in Europe should be assessed, and action taken where possible to ensure that at least "good" quality is attained in each case by 2015. This paper is concerned with the accuracy and precision with which chemical status in rivers can be measured given certain sampling strategies, and how this can be improved. High-frequency (hourly) chemical data from four rivers in southern England were subsampled to simulate different sampling strategies for four parameters used for WFD classification: dissolved phosphorus, dissolved oxygen, pH and water temperature. These data sub-sets were then used to calculate the WFD classification for each site. Monthly sampling was less precise than weekly sampling, but the effect on WFD classification depended on the closeness of the range of concentrations to the class boundaries. In some cases, monthly sampling for a year could result in the same water body being assigned to three or four of the WFD classes with 95% confidence, due to random sampling effects, whereas with weekly sampling this was one or two classes for the same cases. In the most extreme case, the same water body could have been assigned to any of the five WFD quality classes. Weekly sampling considerably reduces the uncertainties compared to monthly sampling. The width of the weekly sampled confidence intervals was about 33% that of the monthly for P species and pH, about 50% for dissolved oxygen, and about 67% for water temperature. For water temperature, which is assessed as the 98th percentile in the UK, monthly sampling biases the mean downwards by about 1 °C compared to the true value, due to problems of assessing high percentiles with limited data. Low-frequency measurements will generally be unsuitable for assessing standards expressed as high percentiles. Confining sampling to the working week compared to all 7 days made little difference, but a modest improvement in precision could be obtained by sampling at the same time of day within a 3 h time window, and this is recommended. For parameters with a strong diel variation, such as dissolved oxygen, the value obtained, and thus possibly the WFD classification, can depend markedly on when in the cycle the sample was taken. Specifying this in the sampling regime would be a straightforward way to improve precision, but there needs to be agreement about how best to characterise risk in different types of river. These results suggest that in some cases it will be difficult to assign accurate WFD chemical classes or to detect likely trends using current sampling regimes, even for these largely groundwater-fed rivers. A more critical approach to sampling is needed to ensure that management actions are appropriate and supported by data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project has been developed to evaluate the possible relationship between the cesspit (pit latrine) in as far as it degrades the quality of underground water. Its importance is due to the fact that in the rural communities in the State of São Paulo (Brazil) this type of cesspit is very common as a means of sewage disposal and these communities use underground water for their supply of drinking water. Rural properties distributed over the rural area in the municipality of São José do Rio Preto were selected. A preliminary study was then set up to determine the social situation and health of the households as well as qualitative evaluations on the type of water supply and sewage disposal of these communities. Campaigns of water sampling then followed and laboratory analyses of water taken from wells were carried out. Parameters were set up to evaluate the potability according to Brazilian legislation (2004) paying attention to microbiologic (coliforms, Crytosporidium sp., and adenovirus). The analyses showed evidence of possible interaction between the wells and the sewage effluents and drainage in these communities. A PCR reaction to detect adenovirus showed a presence in 53.3% of the samples. The tests for the detection of Cryotosporidium sp all showed a negative result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste estudo, a qualidade da água foi verificada no manancial de abastecimento Água Preta, do município de Belém (PA). Houve seis amostragens em seis pontos de coleta e a concentração de coliformes foi verificada através da Técnica de Fermentação em Tubos Múltiplos para a determinação do NMP. Os isolados de Escherichia coli obtidos foram submetidos ao teste de sensibilidade aos seguintes antimicrobianos: cefoxitina, ampicilina, imipenem, gentamicina e amicacina. Além disso, foi investigado genes codificadores de fatores de virulência relacionados às variedades diarreiogênicas de E. coli. Não houve ocorrência de genes relacionados à patogenicidade, e as concentrações de coliformes termotolerantes apresentaram-se dentro dos padrões para mananciais de superfície usados para fins de abastecimento público. Contudo, as maiores concentrações de coliformes totais e termotolerantes foram observadas no ponto de coleta próximo à captação no rio Guamá e na área de maior adensamento populacional no entorno do lago. O teste de suscetibilidade dos isolados E. coli indicou uma alta porcentagem de resistência a ampicilina, a presença de seis perfis fenotípicos e a ocorrência de multiresistência. Assim, os resultados reforçam a necessidade do monitoramento sistemático deste manancial, visando a implementação de políticas de preservação e proteção dos mananciais utilizados para fins de abastecimento público, assim como a prevenção de doenças veiculadas pela água.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wetlands of south-central Nebraska’s Rainwater Basin region are considered of international importance as a habitat for millions of migratory birds, but are being endangered by agricultural practices. The Rainwater Basin extends across 17 counties and covers 4,000 square miles. The purpose of this study was to assemble baseline chemical data for several representative wetlands across the Rainwater Basin region, and determine the use of these chemical data for investigating groundwater recharge. Eight representative wetlands were chosen across the Rainwater Basin to monitor surface and groundwater chemistry. At each site, a shallow well and deep well were installed and sampled once in the summer of 2009 and again in the spring of 2010. Wetland surface water was sampled monthly from April, 2009 to May, 2010. Waters were analyzed for major ions, nutrients, pesticides and oxygen-18 and deuterium isotopes at the University of Nebraska Water Sciences Laboratory. Geochemical analysis of surface waters presents a range of temporal and spatial variations. Wetlands had variable water volumes, isotopic compositions, ion chemistries and agricultural contaminant levels throughout the year and, except for a few trends, theses variations cannot be predicted with certainty year-to-year or wetland-to-wetland. Isotopic compositions showed evaporation was a contributor to water loss, and thus, did impact water chemistry. Surface water nitrate concentrations ranged from <0.10 to 4.04 mg/L. The nitrate levels are much higher in the groundwater, ranging from <0.10 to 18.4 mg/L, and are of concern because they are found above the maximum contaminant level (MCL) of 10 mg/L. Atrazine concentrations in surface waters ranged from <0.05 to 10.3 ppb. Groundwater atrazine concentrations ranged from <0.05 to 0.28 ppb. The high atrazine concentrations in surface waters are of concern as they are above the MCL of 3 ppb, and the highest levels occur during the spring bird migration. Most sampled groundwaters had detectable tritium indicating a mix of modern (<5 to 10 years old) and submodern (older than 1950s) recharge. The groundwater also had differences in chemical and isotope composition, and in some cases, increased nitrate concentrations, between the two sampling periods. Modern groundwater tritium ages and changes in groundwater chemical and isotopic compositions may indicate connections with surface waters in the Rainwater Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this project was to investigate the influence of a large inland lake on adjacent coastal freshwater peatlands. The specific aim was to determine the source of groundwater for three differently formed peatlands located on the southern shore of Lake Superior. The groundwater study was conducted at Bete Grise, a peatland complex in a dune-swale system; Pequaming, a peatland developed in the swale of a tombolo; and Lightfoot Bay, a peatland developed in a barrier beach wetland complex. To determine the source of groundwater in the peatlands, transects of six groundwater monitoring wells were established at each study site, covering distinctly different vegetation zones. At Pequaming and Lightfoot Bay the transects monitored two vegetation zones: transition zone from upland and open fen. At Bete Grise, the transects monitored dunes and swales. Additionally, at all three sites, upland groundwater was monitored using three wells that were installed into the adjacent upland forest. Biweekly measurements of well water pH and specific conductance were carried out from May to October of 2010. At each site, vegetation cover, peat depths and surface elevations were determined and compared to Lake Superior water levels. From June 14 – 17, July 20 – 21 and September 10 – 12, stable isotopes of oxygen (18O/16O) ratios were measured in all the wells and for Lake Superior water. A mixing model was used to estimate the percentage of lake water influencing each site based on the oxygen isotope ratios. During the sampling period, groundwater at all three sites was supported primarily by upland groundwater. Pequaming was approximately 80 % upland groundwater supported and up to 20 % Lake water supported in the uppermost 1 m layer of peat column of the transition zone and open fen. Bete Grise and Lightfoot Bay were 100 % upland groundwater supported throughout the season. The height of Lake Superior was near typical levels in 2010. In years when the lake level is higher, Lake water could intrude into the adjacent peatlands. However, under typical hydrologic conditions, these coastal peatlands are primarily supported by upland groundwater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Continental porphyry Cu‐Mo mine, located 2 km east of the famous Berkeley Pit lake of Butte, Montana, contains two small lakes that vary in size depending on mining activity. In contrast to the acidic Berkeley Pit lake, the Continental Pit waters have near-neutral pH and relatively low metal concentrations. The main reason is geological: whereas the Berkeley Pit mined highly‐altered granite rich in pyrite with no neutralizing potential, the Continental Pit is mining weakly‐altered granite with lower pyrite concentrations and up to 1‐2% hydrothermal calcite. The purpose of this study was to gather and interpret information that bears on the chemistry of surface water and groundwater in the active Continental Pit. Pre‐existing chemistry data from sampling of the Continental Pit were compiled from the Montana Bureau of Mines and Geology and Montana Department of Environmental Quality records. In addition, in March of 2013, new water samples were collected from the mine’s main dewatering well, the Sarsfield well, and a nearby acidic seep (Pavilion Seep) and analyzed for trace metals and several stable isotopes, including dD and d18O of water, d13C of dissolved inorganic carbon, and d34S of dissolved sulfate. In December 2013, several soil samples were collected from the shore of the frozen pit lake and surrounding area. The soil samples were analyzed using X‐ray diffraction to determine mineral content. Based on Visual Minteq modeling, water in the Continental Pit lake is near equilibrium with a number of carbonate, sulfate, and molybdate minerals, including calcite, dolomite, rhodochrosite (MnCO3), brochantite (CuSO4·3Cu(OH)2), malachite (Cu2CO3(OH)2), hydrozincite (Zn5(CO3)2(OH)6), gypsum, and powellite (CaMoO4). The fact that these minerals are close to equilibrium suggests that they are present on the weathered mine walls and/or in the sediment of the surface water ponds. X‐Ray Diffraction (XRD) analysis of the pond “beach” sample failed to show any discrete metal‐bearing phases. One of the soil samples collected higher in the mine, near an area of active weathering of chalcocite‐rich ore, contained over 50% chalcanthite (CuSO4·5H2O). This water‐soluble copper salt is easily dissolved in water, and is probably a major source of copper to the pond and underlying groundwater system. However, concentrations of copper in the latter are probably controlled by other, less‐soluble minerals, such as brochantite or malachite. Although the acidity of the Pavilion Seep is high (~ 11 meq/L), the flow is much less than the Sarsfield Well at the current time. Thus, the pH, major and minor element chemistry in the Continental Pit lakes are buffered by calcite and other carbonate minerals. For the Continental Pit waters to become acidic, the influx of acidic seepage (e.g., Pavilion Seep) would need to increase substantially over its present volume.