936 resultados para gridding accuracy
Resumo:
As the technologies for the fabrication of high quality microarray advances rapidly, quantification of microarray data becomes a major task. Gridding is the first step in the analysis of microarray images for locating the subarrays and individual spots within each subarray. For accurate gridding of high-density microarray images, in the presence of contamination and background noise, precise calculation of parameters is essential. This paper presents an accurate fully automatic gridding method for locating suarrays and individual spots using the intensity projection profile of the most suitable subimage. The method is capable of processing the image without any user intervention and does not demand any input parameters as many other commercial and academic packages. According to results obtained, the accuracy of our algorithm is between 95-100% for microarray images with coefficient of variation less than two. Experimental results show that the method is capable of gridding microarray images with irregular spots, varying surface intensity distribution and with more than 50% contamination
Resumo:
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).
Resumo:
The purpose of this study was to assess the efficacy and reproducibility of the cytologic diagnosis of salivary gland tumors (SGTs) using fine-needle aspiration cytology (FNAC). The study aimed to determine diagnostic accuracy, sensitivity, and specificity and to evaluate the extent of interobserver agreement. We retrospectively evaluated SGTs from the files of the Division of Pathology at the Clinics Hospital of São Paulo and Piracicaba Dental School between 2000 and 2006. We performed cytohistologic correlation in 182 SGTs. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 94%, 100%, 100%, 100%, and 99%, respectively. The interobserver cytologic reproducibility showed significant statistical concordance (P < .0001). FNAC is an effective tool for performing a reliable preoperative diagnosis in SGTs and shows high diagnostic accuracy and consistent interobserver reproducibility. Further FNAC studies analyzing large samples of malignant SGTs and reactive salivary lesions are needed to confirm their accuracy.
Resumo:
Abstract The aim of this study was to evaluate three transfer techniques used to obtain working casts of implant-supported prostheses through the marginal misfit and strain induced to metallic framework. Thirty working casts were obtained from a metallic master cast, each one containing two implant analogues simulating a clinical situation of three-unit implant-supported fixed prostheses, according to the following transfer impression techniques: Group A, squared transfers splinted with dental floss and acrylic resin, sectioned and re-splinted; Group B, squared transfers splinted with dental floss and bis-acrylic resin; and Group N, squared transfers not splinted. A metallic framework was made for marginal misfit and strain measurements from the metallic master cast. The misfit between metallic framework and the working casts was evaluated with an optical microscope following the single-screw test protocol. In the same conditions, the strain was evaluated using strain gauges placed on the metallic framework. The data was submitted to one-way ANOVA followed by the Tukey's test (α=5%). For both marginal misfit and strain, there were statistically significant differences between Groups A and N (p<0.01) and Groups B and N (p<0.01), with greater values for the Group N. According to the Pearson's test, there was a positive correlation between the variables misfit and strain (r=0.5642). The results of this study showed that the impression techniques with splinted transfers promoted better accuracy than non-splinted one, regardless of the splinting material utilized.
Resumo:
A proper cast is essential for a successful rehabilitation with implant prostheses, in order to produce better structures and induce less strain on the implants. The aim of this study was to evaluate the precision of four different mold filling techniques and verify an accurate methodology to evaluate these techniques. A total of 40 casts were obtained from a metallic matrix simulating three unit implant-retained prostheses. The molds were filled using four different techniques in four groups (n = 10): Group 1 - Single-portion filling technique; Group 2 - Two-step filling technique; Group 3 - Latex cylinder technique; Group 4 - Joining the implant analogs previously to the mold filling. A titanium framework was obtained and used as a reference to evaluate the marginal misfit and tension forces in each cast. Vertical misfit was measured with an optical microscope with an increase of 120 times following the single-screw test protocol. Strain was quantified using strain gauges. Data were analyzed using one-way ANOVA (Tukey's test) (α =0.05). The correlation between strain and vertical misfit was evaluated by Pearson test. The misfit values did not present statistical difference (P = 0.979), while the strain results showed statistical difference between Groups 3 and 4 (P = 0.027). The splinting technique was considered to be as efficient as the conventional technique. The strain gauge methodology was accurate for strain measurements and cast distortion evaluation. There was no correlation between strain and marginal misfit.
Resumo:
Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft.
Resumo:
Several impression materials are available in the Brazilian marketplace to be used in oral rehabilitation. The aim of this study was to compare the accuracy of different impression materials used for fixed partial dentures following the manufacturers' instructions. A master model representing a partially edentulous mandibular right hemi-arch segment whose teeth were prepared to receive full crowns was used. Custom trays were prepared with auto-polymerizing acrylic resin and impressions were performed with a dental surveyor, standardizing the path of insertion and removal of the tray. Alginate and elastomeric materials were used and stone casts were obtained after the impressions. For the silicones, impression techniques were also compared. To determine the impression materials' accuracy, digital photographs of the master model and of the stone casts were taken and the discrepancies between them were measured. The data were subjected to analysis of variance and Duncan's complementary test. Polyether and addition silicone following the single-phase technique were statistically different from alginate, condensation silicone and addition silicone following the double-mix technique (p < .05), presenting smaller discrepancies. However, condensation silicone was similar (p > .05) to alginate and addition silicone following the double-mix technique, but different from polysulfide. The results led to the conclusion that different impression materials and techniques influenced the stone casts' accuracy in a way that polyether, polysulfide and addition silicone following the single-phase technique were more accurate than the other materials.
Resumo:
The present study compared the accuracy of three electronic apex locators (EALs) - Elements Diagnostic®, Root ZX® and Apex DSP® - in the presence of different irrigating solutions (0.9% saline solution and 1% sodium hypochlorite). The electronic measurements were carried out by three examiners, using twenty extracted human permanent maxillary central incisors. A size 10 K file was introduced into the root canals until reaching the 0.0 mark, and was subsequently retracted to the 1.0 mark. The gold standard (GS) measurement was obtained by combining visual and radiographic methods, and was set 1 mm short of the apical foramen. Electronic length values closer to the GS (± 0.5 mm) were considered as accurate measures. Intraclass correlation coefficients (ICCs) were used to verify inter-examiner agreement. The comparison among the EALs was performed using the McNemar and Kruskal-Wallis tests (p < 0.05). The ICCs were generally high, ranging from 0.8859 to 0.9657. Similar results were observed for the percentage of electronic measurements closer to the GS obtained with the Elements Diagnostic® and the Root ZX® EALs (p > 0.05), independent of the irrigating solutions used. The measurements taken with these two EALs were more accurate than those taken with Apex DSP®, regardless of the irrigating solution used (p < 0.05). It was concluded that Elements Diagnostic® and Root ZX® apex locators are able to locate the cementum-dentine junction more precisely than Apex DSP®. The presence of irrigating solutions does not interfere with the performance of the EALs.
Resumo:
We explored possible effects of negative covariation among finger forces in multifinger accurate force production tasks on the classical Fitts's speed-accuracy trade-off. Healthy subjects performed cyclic force changes between pairs of targets ""as quickly and accurately as possible."" Tasks with two force amplitudes and six ratics of force amplitude to target size were performed by each of the four fingers of the right hand and four finger combinations. There was a close to linear relation between movement time and the log-transformed ratio of target amplitude to target size across all finger combinations. There was a close to linear relation between standard deviation of force amplitude and movement time. There were no differences between the performance of either of the two ""radial"" fingers (index and middle) and the multifinger tasks. The ""ulnar"" fingers (little and ring) showed higher indices of variability and longer movement times as compared with both ""radial"" fingers and multifinger combinations. We conclude that potential effects of the negative covariation and also of the task-sharing across a set of fingers are counterbalanced by an increase in individual finger force variability in multifinger tasks as compared with single-finger tasks. The results speak in favor of a feed-forward model of multifinger synergies. They corroborate a hypothesis that multifinger synergies are created not to improve overall accuracy, but to allow the system larger flexibility, for example to deal with unexpected perturbations and concomitant tasks.
Resumo:
Background: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers. Results: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10(-5) for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers. Conclusions: Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.
Resumo:
Single interface flow systems (SIFA) present some noteworthy advantages when compared to other flow systems, such as a simpler configuration, a more straightforward operation and control and an undemanding optimisation routine. Moreover, the plain reaction zone establishment, which relies strictly on the mutual inter-dispersion of the adjoining solutions, could be exploited to set up multiple sequential reaction schemes providing supplementary information regarding the species under determination. In this context, strategies for accuracy assessment could be favourably implemented. To this end, the sample could be processed by two quasi-independent analytical methods and the final result would be calculated after considering the two different methods. Intrinsically more precise and accurate results would be then gathered. In order to demonstrate the feasibility of the approach, a SIFA system with spectrophotometric detection was designed for the determination of lansoprazole in pharmaceutical formulations. Two reaction interfaces with two distinct pi-acceptors, chloranilic acid (CIA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) were implemented. Linear working concentration ranges between 2.71 x 10(-4) to 8.12 x 10(-4) mol L(-1) and 2.17 x 10(-4) to 8.12 x 10(-4) mol L(-1) were obtained for DDQ and CIA methods, respectively. When compared with the results furnished by the reference procedure, the results showed relative deviations lower than 2.7%. Furthermore. the repeatability was good, with r.s.d. lower than 3.8% and 4.7% for DDQ and CIA methods, respectively. Determination rate was about 30 h(-1). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Although the Clock Drawing Test (CDT) is the second most used test in the world for the screening of dementia, there is still debate over its sensitivity specificity, application and interpretation in dementia diagnosis. This study has three main aims: to evaluate the sensitivity and specificity of the CDT in a sample composed of older adults with Alzheimer`s disease (AD) and normal controls; to compare CDT accuracy to the that of the Mini-mental State Examination (MMSE) and the Cambridge Cognitive Examination (CAMCOG), and to test whether the association of the MMSE with the CDT leads to higher or comparable accuracy as that reported for the CAMCOG. Methods: Cross-sectional assessment was carried out for 121 AD and 99 elderly controls with heterogeneous educational levels from a geriatric outpatient clinic who completed the Cambridge Examination for Mental Disorder of the Elderly (CAMDEX). The CDT was evaluated according to the Shulman, Mendez and Sunderland scales. Results: The CDT showed high sensitivity and specificity. There were significant correlations between the CDT and the MMSE (0.700-0.730; p < 0.001) and between the CDT and the CAMCOG (0.753-0.779; p < 0.001). The combination of the CDT with the MMSE improved sensitivity and specificity (SE = 89.2-90%; SP = 71.7-79.8%). Subgroup analysis indicated that for elderly people with lower education, sensitivity and specificity were both adequate and high. Conclusions: The CDT is a robust screening test when compared with the MMSE or the CAMCOG, independent of the scale used for its interpretation. The combination with the MMSE improves its performance significantly, becoming equivalent to the CAMCOG.
Resumo:
The ""Short Cognitive Performance Test"" (Syndrom Kurztest, SKT) is a cognitive screening battery designed to detect memory and attention deficits. The aim of this study was to evaluate the diagnostic accuracy of the SKT as a screening tool for mild cognitive impairment (MCI) and dementia. A total of 46 patients with Alzheimer`s disease (AD), 82 with MCI, and 56 healthy controls were included in the study. Patients and controls were allocated into two groups according to educational level (< 8 years or > 8 years). ROC analyses suggested that the SKT adequately discriminates AD from non-demented subjects (MCI and controls), irrespective of the education group. The test had good sensitivity to discriminate MCI from unimpaired controls in the sub-sample of individuals with more than 8 years of schooling. Our findings suggest that the SKT is a good screening test for cognitive impairment and dementia. However, test results must be interpreted with caution when administered to less-educated individuals.
Resumo:
A technique for improving the performance of an OSNR monitor based on a polarisation nulling method with the downhill simplex algorithm is demonstrated. Establishing a compromise between accuracy and acquisition time, the monitor has been calibrated to 0.72 dB/390 ms and 0.98 dB/320 ms, over a range of nearly 21 dB. As far as is known, these are the best values achieved with such an OSNR monitoring method.
Resumo:
Literature presents a huge number of different simulations of gas-solid flows in risers applying two-fluid modeling. In spite of that, the related quantitative accuracy issue remains mostly untouched. This state of affairs seems to be mainly a consequence of modeling shortcomings, notably regarding the lack of realistic closures. In this article predictions from a two-fluid model are compared to other published two-fluid model predictions applying the same Closures, and to experimental data. A particular matter of concern is whether the predictions are generated or not inside the statistical steady state regime that characterizes the riser flows. The present simulation was performed inside the statistical steady state regime. Time-averaged results are presented for different time-averaging intervals of 5, 10, 15 and 20 s inside the statistical steady state regime. The independence of the averaged results regarding the time-averaging interval is addressed and the results averaged over the intervals of 10 and 20 s are compared to both experiment and other two-fluid predictions. It is concluded that the two-fluid model used is still very crude, and cannot provide quantitative accurate results, at least for the particular case that was considered. (C) 2009 Elsevier Inc. All rights reserved.