987 resultados para green alga
Resumo:
The edible blue-green alga, Nostoc sphaeroides Kutzing, is able to form microcolonies and spherical macrocolonies. It has been used as a potent herbal medicine and dietary supplement for centuries because of its nutraceutical and pharmacological benefits. However, limited information is available on the development of the spherical macrocolonies and the environmental factors that affect their structure. This report described the morphogenesis of N. sphaeroides from single trichomes to macrocolonies. During the process, most structural features of macrocolonies of various sizes were dense maculas, rings, the compact core and the formation of liquid core; and the. laments within the macrocolonies showed different lengths and arrays depending on the sizes of macrocolonies. Meanwhile temperature and light intensity also strongly affected the internal structure of macrocolonies. As microcolonies further increased in size to form 30 mm macrocolonies, the colonies differentiated into distinct outer, middle and inner layers. The. laments of the outer layer showed higher maximum photosynthetic rates, higher light saturation point, and higher photosynthetic effciency than those of the inner layer; whereas the. laments of the inner layer had a higher content of chlorophyll a and phycobiliproteins than those of the outer layer. The results obtained in this study were important for the mass cultivation of N. sphaeroides as a nutraceutical product. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I-k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus.
Resumo:
We evaluated the toxic effect of Microcystis aeruginosa on Daphnia carinata King using survival rate, population growth rate, and body length. When fed Microcystis aerugionsa PCC7820 and liberated colonial Microcystis spp., all D. carinata died within five days. When fed a mixture of M. aeruginosa PCC7820 and the green alga Scenedesmus obliquus, the survival rate, population growth rate, and body length of D. carinata generally increased. The survival rates were all above 80% after ten days. However, with liberated colonial M. aeruginosa, the toxic effect on D. carinata was more pronounced, and only at higher concentration of S. obliquus did that toxic effect abate. Our results indicated that green algae could greatly weaken the toxic effect of cyanobacteria.
Resumo:
Photosynthetic responses of rewetted Nostoc flagelliforme to CO2, desiccation, light and temperature were investigated under emersed conditions in order to characterize its ecophysiological behaviour in nature. Net photosynthesis increased to a maximum rate at about 30 % water loss, then decreased, while dark respiration always decreased with the progress of desiccation. Light-saturated photosynthesis and dark respiration were significantly reduced at 8 degreesC, but remained little affected by changes of temperature within the range of 15-35 degreesC. Photosynthetic efficiency (alpha) was maximal at the beginning of desiccation and then reduced with increased water loss. Saturating irradiance for photosynthesis was about 194-439 mu mol quanta m(-2) s(-1), being maximal at about 30 % water loss. No photoinhibition was observed at irradiances up to 1140 mu mol m(-2) s(-1). Light compensation points were about 41-93 mu mol m(-2) s(-1). Photosynthesis of N. flagelliforme was CO2-limited at the present atmospheric CO2 level. The CO2-saturated photosynthesis increased with increase of irradiance (190-1140 mu mol m(-2) s(-1)) and temperature (8-25 degreesC) and decreased significantly with water loss (0-75 %). Photosynthetic affinity for CO2 was sensitive to temperature and irradiance. The CO2 compensation point (Gamma) increased significantly with increased temperature and was insensitive to irradiance. Desiccation did not affect Gamma values before water loss exceeded 70 %. Photorespiratory CO2 release did not occur in N. flagelliforme at the current atmospheric CO2 level.
Resumo:
Clinorotation experiments were established to simulate microgravity on ground. It was found that there were obvious changes of Dunaliella salina FACHB435 cells and their metabolic characteristics during clinorotation. The changes included the increases of glycerol content, the rate of H+ secretion and PM H+-ATPase activity, and the decrease of ratio of the plasma membrane (PM) phospholipid to PM protein. These results indicated that microgravity was a stress environment to Dunaliella salina. It is deduced that it would be possible to attribute the effect of microgravity on algal cells to the secondary activation of water stress.
Resumo:
Nostoc flagelliforme, which is distributed in arid or semiarid steppes of the west and west-northern parts of China, has been used by the Chinese as a food delicacy and for its herbal values for hundreds of years. However, the resource is being over-exploited and is diminishing, while the market demands are increasing with the economic growth. This review deals mainly with the Chinese studies on the ecology, physiology, reproduction, morphology and culture of this species in an attempt to promote research and development of its cultivation technology.
Resumo:
A marine green alga, Platymonas subcordiformis, was demonstrated to photobiologically evolve hydrogen (H-2) after the first stage of photosynthesis, when subjected to a two-phase incubation protocol in a second stage of H2 production: anaerobic incubation in the dark followed by the exposure to light illumination. The anaerobic incubation induced hydrogenase activity to catalyse H? evolution in the following phase of light illumination. H,) evolution strongly depended upon the duration of anaerobic incubation, deprivation of sulphur (S) from the medium and the medium pH. An optimal anaerobic incubation period of 32 h gave the maximum H2 evolution in the second phase in the absence of sulphur. Evolution of H,) was greatly enhanced by 13 times when S was deprived from the medium. This result suggests that S plays a critical role in the mediation of H-2 evolution from R subcordiformis. A 14-fold increase in H-2 production was obtained when the medium pH increased from 5 to 8; with a sharp decline at pH above eight. H-2 evolution was enhanced by 30-50% when supplementing the optimal concentrations of 25 mM acetate and 37.5 mM glucose. (C) 2003 Elsevier B.V. All rights reserved.