969 resultados para gravitational 2-body problem
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The regular-geometric-figure solution to the N-body problem is presented in a very simple way. The Newtonian formalism is used without resorting to a more involved rotating coordinate system. Those configurations occur for other kinds of interactions beyond the gravitational ones for some special values of the parameters of the forces. For the harmonic oscillator, in particular, it is shown that the N-body problem is reduced to N one-body problems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The three-dimensional three-body problem with non-equal masses interacting through pairwise harmonic forces of non-equal strengths is analysed. It is shown that the Jacobi coordinates per se do not decouple this problem but lead to the problem of two coupled three-dimensional harmonic oscillators which becomes exactly soluble through the use of an additional coordinate set.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131?150,2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez?s method for near-circular motion under the J2 perturbation is transformed into linear.Moreover, themethod reveals to be competitive with two very popular elementmethods derived from theKustaanheimo-Stiefel and Sperling-Burdet regularizations.
Resumo:
We discuss a many-body Hamiltonian with two- and three-body interactions in two dimensions introduced recently by Murthy, Bhaduri and Sen. Apart from an analysis of some exact solutions in the many-body system, we analyse in detail the two-body problem which is completely solvable. We show that the solution of the two-body problem reduces to solving a known differential equation due to Heun. We show that the two-body spectrum becomes remarkably simple for large interaction strengths and the level structure resembles that of the Landau levels. We also clarify the 'ultraviolet' regularization which is needed to define an inverse-square potential properly and discuss its implications for our model.
Resumo:
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.
Resumo:
We compute families of symmetric periodic horseshoe orbits in the restricted three-body problem. Both the planar and three-dimensional cases are considered and several families are found.We describe how these families are organized as well as the behavior along and among the families of parameters such as the Jacobi constant or the eccentricity. We also determine the stability properties of individual orbits along the families. Interestingly, we find stable horseshoe-shaped orbit up to the quite high inclination of 17◦
Resumo:
In this paper, we show the existence of new families of spatial central configurations for the n + 3-body problem, n >= 3. We study spatial central configurations where n bodies are at the vertices of a regular n-gon T and the other three bodies are symmetrically located on the straight line that is perpendicular to the plane that contains T and passes through the center of T. The results have simple and analytic proofs. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we show the existence of three new families of stacked spatial central configurations for the six-body problem with the following properties: four bodies are at the vertices of a regular tetrahedron and the other two bodies are on a line connecting one vertex of the tetrahedron with the center of the opposite face. (c) 2009 Elsevier B.V. All rights reserved.