1000 resultados para grating detection
Resumo:
Copyright © 2015 Elsevier Ltd. All rights reserved. This research was funded by French ANR Grant ANR-2010-BLAN-1432-01 (Visafix). The authors would like to thank Dr. Laurent Madelain and Dr. Claudio Simoncini for the helpful discussions during the development of the study.
Resumo:
Copyright © 2015 Elsevier Ltd. All rights reserved. This research was funded by French ANR Grant ANR-2010-BLAN-1432-01 (Visafix). The authors would like to thank Dr. Laurent Madelain and Dr. Claudio Simoncini for the helpful discussions during the development of the study.
Resumo:
To assess binocular detection grating acuity using the LEA GRATINGS test to establish age-related norms in healthy infants during their first 3 months of life. In this prospective, longitudinal study of healthy infants with clear red reflex at birth, responses to gratings were measured at 1, 2, and 3 months of age using LEA gratings at a distance of 28 cm. The results were recorded as detection grating acuity values, which were arranged in frequency tables and converted to a one-octave scale for statistical analysis. For the repeated measurements, analysis of variance (ANOVA) was used to compare the detection grating acuity results between ages. A total of 133 infants were included. The binocular responses to gratings showed development toward higher mean values and spatial frequencies, ranging from 0.55 ± 0.70 cycles per degree (cpd), or 1.74 ± 0.21 logMAR, in month 1 to 3.11 ± 0.54 cpd, or 0.98 ± 0.16 logMAR, in month 3. Repeated ANOVA indicated differences among grating acuity values in the three age groups. The LEA GRATINGS test allowed assessment of detection grating acuity and its development in a cohort of healthy infants during their first 3 months of life.
Resumo:
Until recently, the hard X-ray, phase-sensitive imaging technique called grating interferometry was thought to provide information only in real space. However, by utilizing an alternative approach to data analysis we demonstrated that the angular resolved ultra-small angle X-ray scattering distribution can be retrieved from experimental data. Thus, reciprocal space information is accessible by grating interferometry in addition to real space. Naturally, the quality of the retrieved data strongly depends on the performance of the employed analysis procedure, which involves deconvolution of periodic and noisy data in this context. The aim of this article is to compare several deconvolution algorithms to retrieve the ultra-small angle X-ray scattering distribution in grating interferometry. We quantitatively compare the performance of three deconvolution procedures (i.e., Wiener, iterative Wiener and Lucy-Richardson) in case of realistically modeled, noisy and periodic input data. The simulations showed that the algorithm of Lucy-Richardson is the more reliable and more efficient as a function of the characteristics of the signals in the given context. The availability of a reliable data analysis procedure is essential for future developments in grating interferometry.
Resumo:
This article illustrates the detection of 6 degrees of freedom (DOF) for Virtual Environment interactions using a modified simple laser pointer device and a camera. The laser pointer is combined with a diffraction rating to project a unique laser grid onto the projection planes used in projection-based immersive VR setups. The distortion of the projected grid is used to calculate the translational and rotational degrees of freedom required for human-computer interaction purposes.
Resumo:
A prototype fibre-optic system using interferometric wavelength-shift detection, capable of multiplexing up to 32 fibre-optic Bragg grating strain and temperature sensors with identical characteristics, has been demonstrated. This system is based on a spatially multiplexed scheme for use with fibre-based low-coherence interferometric sensors, reported previously. Four fibre-optic Bragg grating channels using the same fibre grating have been demonstrated for measuring quasi-static strain and temperature.
Resumo:
We present, for the first time to our knowledge, experimental evidence showing that superimposed blazed fiber Bragg gratings may be fabricated and used to extend the dynamic range of a grating-based spectrometer. Blazed gratings of 4° and 8° were superimposed in germanosilicate fiber by ultraviolet inscription and used in conjunction with a coated charged-coupled device array to interrogate a wavelength-division-multiplexing sensor array. We show that the system can be used to monitor strain and temperature sensors simultaneously with an employable bandwidth which is extendable to 70 nm.
Resumo:
Using an optical biosensor based on a dual-peak long-period fiber grating, we have demonstrated the detection of interactions between biomolecules in real time. Silanization of the grating surface was successfully realized for the covalent immobilization of probe DNA, which was subsequently hybridized with the complementary target DNA sequence. It is interesting to note that the DNA biosensor was reusable after being stripped off the hybridized target DNA from the grating surface, demonstrating a function of multiple usability.
Resumo:
The use of fixation points (FPs) in visual psychophysics is common practice, though the costs and benefits of different fixation regimens have not been compared. Here we investigate the influence of several different types of FP configurations on the contrast detection of patches of sine-wave gratings. We find that for small targets (1°), the addition of a superimposed central FP can increase thresholds by a factor of 1.3 (2.5 dB) in comparison with no FP, and a factor of 1.5 (3.6 dB) in comparison with FPs that surround the target. These results are consistent with (i) a suppressive influence on the central region of the target from a central FP, and (ii) facilitatory influences from surrounding FPs. Our analysis of the slope of the psychometric function suggests that the facilitatory influence is not due to reduction of uncertainty. Plausible candidate causes for the facilitation are: (i) sensory interactions, (ii) aids to ocular accommodation and convergence, (iii) a reduction in eye-movements and (iv) more accurate placement of the observer’s window of attention. Masking by a central FP is not found for the suprathreshold task of contrast discrimination, suggesting that the masking effects of pedestal and FP do not combine linearly. This means that estimates of the level of masking produced by a contrast pedestal can depend on the details of the fixation point.
Resumo:
Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.
Resumo:
We implement an optical biosensor using long-period fibre grating immobilised with probe DNA. It has been used to detect hybridisation of target DNA, showing a high sensitivity and reusability function.
Resumo:
A prototype fibre-optic system using interferometric wavelength-shift detection, capable of multiplexing up to 32 fibre-optic Bragg grating strain and temperature sensors with identical characteristics, has been demonstrated. This system is based on a spatially multiplexed scheme for use with fibre-based low-coherence interferometric sensors, reported previously. Four fibre-optic Bragg grating channels using the same fibre grating have been demonstrated for measuring quasi-static strain and temperature.
Resumo:
We present, for the first time to our knowledge, experimental evidence showing that superimposed blazed fiber Bragg gratings may be fabricated and used to extend the dynamic range of a grating-based spectrometer. Blazed gratings of 4° and 8° were superimposed in germanosilicate fiber by ultraviolet inscription and used in conjunction with a coated charged-coupled device array to interrogate a wavelength-division-multiplexing sensor array. We show that the system can be used to monitor strain and temperature sensors simultaneously with an employable bandwidth which is extendedable to 70 nm.